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Setup: Supervised learning

= Dataset: S, = {Z;}1-; € Z™" = §,drawn i.i.d. ~u
= e.g., regression: Z; = (X;,Y;) withX; e R™andY; € R
* Hypothesis class: W
= e.g., neural network weights
= Loss function: : W X Z - R
= e.g., square loss: £(w, (x,¥)) = (f (w,x) — v)?
" Learning algorithm A:§ — W produces hypothesis W,, = A(S,,)
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Information-theoretic generalization

Theorem
(Russo & Zou, 2016, Xu & Raginsky, 2017)

Suppose that £(w, Z) is a-subgaussian forallw € W,
Then, for any learning algorithm A,

ZO'ZDKL(PWn,Sn‘PWn ® PSn)
\ n

|E[gen(W,,, SOl <
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Notation

= A ={distributions P on W X § with § -marginal u®"}
= Important special choices: B, = Py,_s and P, = Py, & Ps_
= F ={bounded measurable functions f: W x § - R}

"Forany P € Aand f € F, define
(P, f) = IE(W,S)~P f(W,$)]

= Centered loss: (w, z) = ¢(w,z) — E[£(w, Z")]

= Centered average loss: L,,(w, s) = %Z’{‘:l 2 (w,z;)

Expected generalization error:




Notation++

"LetH:A - R, beconvex:VP,P' € A,A € |0,1]:
HAP+ (1 —-A)P") <AHP)+ (1 —A)H(P')

= Legendre-Fenchel conjugate of H defined forall f € F as

H*(f) = supu(P, f) — H(P)}

PEA
= Fenchel-Young inequality: foranyP € Aand f € F,

(P,f)<H(P)+ H"(f)



A generalization bound

Foranyn € R:
NPy s ,Ln) <H(Py s )+ H* (nly)



A generalization bound

Foranyn € R:
NPy s, Ln) <H(Py. s )+ H* (nly)

When can this be 0 (n?/n)?

H(Pa) | Cn - [CH(Pn)

n n n

(that would imply a bound of order



Example 1: relative entropy

= H(P) = Dk (P|P,,)
O Conjugate; H*(f) = lOg IEWn;Sfl [exp(f(Wn, 57’1))] (Donsker-Varadhan formula)
= Applied to nL,,:

2 2

H*(nLy) = log Ey s [exp (% Y oW, Z{))] <12

n
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Example 2: y°-divergence
“H(P) =D, (P|P,) = [ (dp(;;f")z

" Conjugate: H*(f) = Ey, o [(f Wy, Sp) — E[f (W}, Sp)D?]
= Applied to nL,,:

_ n?Var[¢(Wp,z")]

H (1) = By [ (2200 (B, 2D) — E[208,,ZD])| =

n



Example 2: y°-divergence
“H(P) =D, (P|P,) = [ (dP;;f")
« Conjugate: H*(f) = Ey,_g [(fF (Wi, S}) — ELf (W, ST
= Applied to nL,,:

HY (1) = By, | (2200 (W, 20) = E[E(W, ZD]))z] =

n?var[e(wy,z')]
n

2(P,|Py) nVar[f(W Z’)]

E[gen(Wy, S,)] < O
7’] n

(Is this known?)
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= We will consider functions H of the form
H(P) = Eg|h(P)s)],
where

= Ps is the conditional distribution of W|S = s under (W, S) ~ P

= his aconvex function acting on distributions over W:
vQ,Q' € Dist(W), 1 € [0,1]:
h(2Q + (1 —)Q') < Ah(Q) + (1 — Dh(Q’)
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Seriously, how do we pick H?

= We will consider functions H of the form
H(P) = Eg|h(P)s)],

where
" Psisthec Terminology: P
"hisa conv H: “dependence measure”
vQ,0Q

h: “conditional dependence measure”

= his a-strongly convex wrt some norm ||-||?:

vQ, Q' € Dist(W), 1 € [0,1]:
aA(1 = 1)
h(2Q + (1 —1)Q") < 2h(Q) + (1 — HR(Q") —

— 0'll?
— e -l




Main result

Theorem

Suppose that H satisfies the conditions above for & > 0 and ||-||?.
Then, for any learning algorithm A,

2H(R)EL|I2(, Z")||£]
\l an

|E[gen(W,,, S)Il <

Dual norm: [[£(-, 2)]|. = sup (Q—0Q',4(-,2))
Q-Q":lle-Q'lI=1




Basic examples

Relative entropy

4Dg1(Pw, 5, P, ® Ps,, )E [H?(.’Z,)Hi’]

n

E[gen(W,, S,)] < \

p-norm with p € (1,2]

4E|[1Pu,5, = P, E[12C 20|
(p — Dn

E[gen(W,, Sp)] <

\
p-norm wWith p > 2
2DE {[|Puis, = P, I} | E [12C, 2017

Elgen(W,, S,)] < (p — 1)nl/p
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Basic examples

Relative entropy

4Dy (Pw, 5, Pw, ® Ps,, )E [H?(.’Z,)Hil

E[gen(W,, S,)] <
\ n

p-norm with p € (1,2]

® ® ® All of these are potentially
unbounded / meaningless ® ® ® AT [HPWnlSn _ PWn

E [gen(Wn, Sn)] <

e [lec. 20l ]
(p —1n

\
n=norm withp > 2
2DE {[|Puis, = P, |l | E [12C, 2017

Elgen(W,, S,)] < (p — 1)nl/p
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The smoothed relative entropy

= Let W = R? and define the Gaussian smoothing operator for o > 0
on distributions Q over W as
G,Q =Law(W +0dé) Ww~q ¢~n(0D)



The smoothed relative entropy

= Let W = R? and define the Gaussian smoothing operator for o > 0
on distributions Q over W as
G,0 =Law(W +cd&) WwW~0q ¢~n(0,D)

* Define the smoothed relative entropy as

Ds(Q1Q") = Dk(G;Q1G;Q")

and the smoothed total variation distance as

1Q — Q’“a — ”GO'Q — GO‘Q’”TV



Smoothing is cool

L0 = @' <D, (010") < — W2(0, Q')
2 o = ~0 ~ 202 4V



Smoothing is cool

1 / 1 !
110 = Q'lIz < D, (Q1Q) < 55 W3(Q, Q"

Theorem
For any learning algorithm A,

|E[gen(W,,, S,.)]| < %E[W%(Pwnlsn'Pwn)]E[Ilf(-,Z’)IIé*]

\ n




Smoothing is cool

1 / 1 /
2110 = Q'lI5 < D, (Q1Q) < 55 W3(Q. Q")

Theorem
For any learning algorithm A,

%E[W%(Pwnwn;Pwn)]IE[llf<-,z'>||g,*]

n

|Elgen(W,,, SOl <

\




The dual norm || - || .

Lemma
Suppose that f is infinitely smooth in the sense that all for all k, all of
its partial derivatives of order k are bounded as [D*f(w)| < .

Then, Iflly. < 3o (ovd)" By




The dual norm || - ||,

Lemma
Suppose that f is infinitely smooth in the sense that all for all k, all of
its partial derivatives of order k are bounded as [D*f(w)| < .

Then, Iflly. < 3o (ovd)" By

Theorem
Suppose that #(;, z) is infinitely smooth with 8, < B (Vk). Then,

862dE|W53 (PWnISn' PWn)]
[E[gen(Wy,, Sp)]l < j:



The dual norm || - ||,

all for all k, all of
*fF(w)| < B

Supposet
Its partie

Theorem
Suppose that #(;, z) is infinitely smooth with 8, < B (Vk). Then,

_ 8B2dE[W3(Pu,s, Pw,)]
B n

|Elgen(W,,, S,) ]I
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Proof idea:
A reduction to online learning

The generalization game

Foreacht = 1,2, ...,n, repeat

* Online learner picks P, = Law(W,,S,,) € A, € P(W X §)

- Online learner gains reward (P;, ¢;) = E[¢(W,, Z;) — ¢(W,, Z')]
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Proof idea:
A reduction to online learning

The generalization game

Foreacht = 1,2, ...,n, repeat

* Online learner picks P, = Law(W,,S,,) € A, € P(W X §)

- Online learner gains reward (P,, ¢;) = E|¢(W,, Z;) — ¢(W;, Z")|

R; =Regret of online learner Gt = Total gain of online learner



Proof idea Il:
“Follow the Regularized Leader”

= We “run” FTRL in the generalization game:

P = arg max{n(P, Xie=1 4¢) — H(P)}



P

roof idea Il:

“Follow the Regularized Leader”

= We “run” FTRL in the generalization game

P, = arg
= Bound the regret of FTRL

Ry < H(Pn) + 772 E

max{n( ) H(P)}

PEA,
using the classic analysis:

I2.,20]°] ~ JntBIE[2.C. 2]



Proof idea Il:
“Follow the Regularized Leader”

= We “run” FTRL in the generalization game:

P = arg max{n(P, Xi=3 £¢) — H(P)]

= Bound the regret of FTRL using the classic analysis:

|

n

" Hard part: show the gain of online learner is zero:
(P, ?:) = El¢(W,,Z,) —¢(W,, Z')| =0

= Ingredients: tricky choice of A,, and H and exploiting i.i.d.-ness of data

Ry < T 2 E[||2.C.20|[ ] ~ JnH(Pn)E ¢ 2")
t=1



Proof idea Ill:
Construction of A,

= Define ghost samples S;, = {Z},Z5, ..., Z}}

= For all i, define
= “mixed bag” SO = {Z,,Z,, ., Zi, Z} 1) ooy Z1)
= W; = A(SW)
= p; = law(W;, S,,)
= A; = conv({Py, Py, ..., P;})



Proof idea IV:
Finishing up

= Two ingredients for showing (P, £;) = 0:
= P, € A,_; (by construction of H and {A;};):
. (Pt—1:zt—1> = <Ptrzt—1> == <Pn»zt—1>
» H(P;_1) < H(P;) < :-- < H(P,) (Jensen’s inequality)
= Forall P = law(W,S,) € A;_;, we have
(P, ¢:) = E[¢(W,Z,)] = 0
(thanks to the independence of W and Z;)
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= We can go beyond standard “information-theoretic” techniques!

= Tradeoffs around strong convexity:
" Largea — large H(PR,)
= Small ||?||, — large H(PR,)



What did we learn & what next?

= We can go beyond standard “information-theoretic” techniques!

= Tradeoffs around strong convexity:
" Largea — large H(PR,)
= Small ||?||, — large H(PR,)

= Examples:
= Boring: relative entropy, p-norm...
= Cool: Smoothed relative entropy
= What else? Wasserstein, Fisher...?

= High-probability bounds?



3
Thanks!!
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P rO Of I d ea (for strongly convex H)
" Define potential function B
®(nL,) = sup {n(P,L,) — H(P)}
PEA,
= Forall i € [n], define L;(w, s) = %Z}'{:l? (w, z)

= Decompose potential: ®(nL,) = X, (CID(nZi) — d)(nzi_l))
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P rO Of id ea (for strongly convex H)

" Define potential function B
P(nly) = sup {(n(P,Ln) ~ H(P)]
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P rO Of id ea (for strongly convex H)

" Define potential function B
P(nly) = sup {(n(P,Ln) ~ H(P)]

= Forall i € [n], define L;(w, s) = %Z,‘;{ﬂ? (w, z)

= Decompose potential: ®(nL,) = X, (CID(nZi) — d)(nzi_l))
= Use the convexity + smoothness of ® = H*:

_ _ _ — _ H’?Zi - Uzi—1 .
O(nL;) < P(nLi-1) + (VP(NLi-1),nLi —1Li—y) + 2

\ Y J 772H£

:O o



Construction of A,

= Define ghost samples S;, = {Z{,Z,, ..., Z;,}
= Forall i, define
" “mixed bag” S(l) — {Zl» Ly, ... Zu l+1: n}
"W, = A(SW)
= P, = law(W;, S,,)
=A; = conv({P,, Py, ..., P;})



Finishing up

= Three ingredients for showing (V®(nL;_;),nL; — nL;_;) = 0:
: VCD(nZi_l) = argmaxpeAn{r](P,Zi_l) — H(P)} (Danskin’s theorem)
= Maximizer isin A;_4 (by construction of H and {A;},):
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(thanks to the independence of W and Z;)
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Strong convexity of D

Lemma

The function h(Q) = D, (Q|Py,, ) is 1-strongly convex
with respect to the smoothed total variation distance.

Proof steps:
= The Bregman divergence of h is B, (Q|Q") = D,(Q|Q")
* Pinsker’s inequality:

1 1
D5 (Q1Q") = Dx(G,0Q1G,Q) = 711G Q — GoQ'llFy = S 1@ - Q'llZ



Boundedness of D,

Lemma
The smoothed relative entropy is upper-bounded by the

squared Wasserstein-2 distance: D, (Q|Q") < —W2(Q, Q")

202

Proof steps:
* Let w be the coupling of Q and Q' that achieves the infimum in the def. of W,

* D, (Q1Q") = Dki.([,, N (w, o2Ddr(w,w") | [, N (W', 62D dr(w,w"))
< j D, (N (w,a?D|N (W', a2])) dn(w,w’) = j
% %

N

Jensen’s inequality + joint convexity of Dy,

— llw = w12 dr(w, w")



