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Setup: Supervised learning

▪ Data set: 𝑆𝑛 = 𝑍𝑖 𝑖=1
𝑛 ∈ 𝒵𝑛 = 𝒮, drawn i.i.d. ~𝜇

▪ e.g., regression: 𝑍𝑖 = 𝑋𝑖 , 𝑌𝑖 with 𝑋𝑖 ∈ ℝ
𝑚 and 𝑌𝑖 ∈ ℝ

▪Hypothesis class: 𝒲
▪ e.g., neural network weights

▪ Loss function: ℓ:𝒲 × 𝒵 → ℝ
▪ e.g., square loss: ℓ 𝑤, 𝑥, 𝑦 = 𝑓 𝑤, 𝑥 − 𝑦 2

▪ Learning algorithm 𝒜:𝒮 → 𝒲 produces hypothesis 𝑊𝑛 = 𝒜 𝑆𝑛
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Generalization error:
gen 𝑊𝑛, 𝑆𝑛 =

1

𝑛
σ𝑖=1
𝑛 ℓ 𝑊𝑛, 𝑍𝑖 − 𝔼 ℓ 𝑊𝑛, 𝑍

′ 𝑊𝑛



Information-theoretic generalization

Theorem
(Russo & Zou, 2016, Xu & Raginsky, 2017)

Suppose that ℓ(𝑤, 𝑍) is 𝜎-subgaussian for all 𝑤 ∈ 𝒲. 
Then, for any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
2𝜎2𝒟KL 𝑃𝑊𝑛,𝑆𝑛 𝑃𝑊𝑛

⊗𝑃𝑆𝑛
𝑛
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What’s special about 𝒟KL?



Can we replace 𝒟KL by another function 𝐻 and get

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
const ⋅ 𝐻 𝑃𝑊𝑛,𝑆𝑛

𝑛

?

More concretely:

(picture unrelated)



Can we replace 𝒟KL by another function 𝐻 and get

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
const ⋅ 𝐻 𝑃𝑊𝑛,𝑆𝑛

𝑛

?

More concretely:

(picture very much related)



Outline

▪Supervised learning crash course

▪Beyond “information theoretic” generalization

▪Generalization bounds via convex analysis

▪ Classic examples: relative entropy, 𝜒2, 𝑝-norm…

▪New (and cool?) example: smoothed relative entropy

▪ Some words about the proof



Notation

▪ Δ ={distributions 𝑃 on 𝒲× 𝒮 with 𝒮 -marginal 𝜇⊗𝑛}

▪ Important special choices: 𝑃𝑛 = 𝑃𝑊𝑛,𝑆𝑛 and 𝑃𝑛 = 𝑃𝑊𝑛
⊗𝑃𝑆𝑛
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▪ Centered average loss: 𝐿𝑛 𝑤, 𝑠 =
1

𝑛
σ𝑖=1
𝑛 തℓ (𝑤, 𝑧𝑖)

Expected generalization error:
𝔼 gen 𝑊𝑛, 𝑆𝑛 = 𝑃𝑛, 𝐿𝑛



Notation++

▪ Let 𝐻: Δ → ℝ+ be convex: ∀𝑃, 𝑃′ ∈ Δ, 𝜆 ∈ 0,1 :
𝐻 𝜆𝑃 + 1 − 𝜆 𝑃′ ≤ 𝜆𝐻 𝑃 + 1 − 𝜆 𝐻 𝑃′

▪ Legendre–Fenchel conjugate of 𝐻 defined for all 𝑓 ∈ ℱ as
𝐻∗ 𝑓 = sup

𝑃∈Δ
𝑃, 𝑓 − 𝐻 𝑃

▪ Fenchel–Young inequality: for any 𝑃 ∈ Δ and 𝑓 ∈ ℱ,
𝑃, 𝑓 ≤ 𝐻 𝑃 + 𝐻∗ 𝑓



A generalization bound

For any 𝜂 ∈ ℝ:

𝜂 𝑃𝑊𝑛,𝑆𝑛 , 𝐿𝑛 ≤ 𝐻 𝑃𝑊𝑛,𝑆𝑛 + 𝐻∗ 𝜂𝐿𝑛



A generalization bound

For any 𝜂 ∈ ℝ:

𝜂 𝑃𝑊𝑛,𝑆𝑛 , 𝐿𝑛 ≤ 𝐻 𝑃𝑊𝑛,𝑆𝑛 + 𝐻∗ 𝜂𝐿𝑛

When can this be 𝑂(𝜂2/𝑛)?

(that would imply  a bound of order 
𝐻 𝑃𝑛

𝜂
+

𝐶𝜂

𝑛
∼

𝐶𝐻 𝑃𝑛

𝑛
)



Example 1: relative entropy

▪𝐻 𝑃 = 𝒟KL 𝑃 𝑃𝑛

▪ Conjugate: 𝐻∗ 𝑓 = log 𝔼𝑊𝑛,𝑆𝑛
′ exp 𝑓 𝑊𝑛, 𝑆𝑛

′
(Donsker-Varadhan formula)

▪ Applied to 𝜂𝐿𝑛: 

𝐻∗ 𝜂𝐿𝑛 = log 𝔼𝑊𝑛,𝑆𝑛
′ exp

𝜂

𝑛
σ𝑖=1
𝑛 ℓ 𝑊𝑛, 𝑍𝑖

′ ≤
𝜂2𝜎2

𝑛
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𝑛

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
𝒟KL 𝑃𝑛 𝑃𝑛

𝜂
+
𝜂𝜎2

𝑛
∼

𝜎2𝒟KL 𝑃𝑛 𝑃𝑛
𝑛



Example 2: 𝜒2-divergence

▪𝐻 𝑃 = 𝒟𝜒2 𝑃 𝑃𝑛 = ∫
d𝑃 −d𝑃𝑛

2

d𝑃𝑛

▪ Conjugate: 𝐻∗ 𝑓 = 𝔼𝑊𝑛,𝑆𝑛
′ 𝑓 𝑊𝑛, 𝑆𝑛

′ − 𝔼 𝑓 𝑊𝑛, 𝑆𝑛
′ 2

▪ Applied to 𝜂𝐿𝑛: 
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′

2
=

𝜂2Var ℓ 𝑊𝑛,𝑍
′

𝑛
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=
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𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
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𝜂
+
𝜂Var ℓ 𝑊𝑛, 𝑍

′

𝑛
∼

Var ℓ 𝑊𝑛, 𝑍
′ 𝒟𝜒2 𝑃𝑛 𝑃𝑛

𝑛

(Is this known?)
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▪We will consider functions 𝐻 of the form
𝐻 𝑃 = 𝔼𝑆 ℎ 𝑃|𝑆 ,

where
▪ 𝑃|𝑠 is the conditional distribution of 𝑊|𝑆 = 𝑠 under 𝑊,𝑆 ∼ 𝑃

▪ ℎ is a convex function acting on distributions over 𝒲:
∀𝑄,𝑄′ ∈ Dist 𝒲 , 𝜆 ∈ 0,1 :

ℎ 𝜆𝑄 + 1 − 𝜆 𝑄′ ≤ 𝜆ℎ 𝑄 + 1 − 𝜆 ℎ 𝑄′
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Terminology:
𝐻: “dependence measure”

ℎ: “conditional dependence measure”



Main result

Dual norm: ℓ ⋅, 𝑍 ∗ = sup
𝑄−𝑄′: 𝑄−𝑄′ =1

𝑄 − 𝑄′, ℓ ⋅, 𝑍

Theorem
Suppose that 𝐻 satisfies the conditions above for 𝛼 > 0 and ⋅ 2.

Then, for any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
2𝐻 𝑃𝑛 𝔼 ℓ ⋅, 𝑍′ ∗

2

𝛼𝑛



Basic examples
Relative entropy

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
4𝒟KL 𝑃𝑊𝑛,𝑆𝑛 𝑃𝑊𝑛

⊗𝑃𝑆𝑛 𝔼 തℓ ⋅, 𝑍′
∞

2

𝑛

𝑝-norm with 𝑝 ∈ (1,2]

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
4𝔼 𝑃𝑊𝑛|𝑆𝑛 − 𝑃𝑊𝑛 𝑝

2
𝔼 തℓ ⋅, 𝑍′

𝑞

2

(𝑝 − 1)𝑛

𝑝-norm with 𝑝 > 2

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤
2𝑝𝔼 𝑃𝑊𝑛|𝑆𝑛 − 𝑃𝑊𝑛 𝑝

𝑝
𝔼 തℓ ⋅, 𝑍′

𝑞

𝑞

𝑝 − 1 𝑛1/𝑝
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 All of these are potentially 
unbounded / meaningless 
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The smoothed relative entropy

▪ Let 𝒲 = ℝ𝑑 and define the Gaussian smoothing operator for 𝜎 > 0
on distributions 𝑄 over 𝒲 as

𝐺𝜎𝑄 = Law(𝑊 + 𝜎𝜉) (𝑊 ∼ 𝑄, 𝜉 ∼ 𝒩 0, 𝐼 )



The smoothed relative entropy

▪ Let 𝒲 = ℝ𝑑 and define the Gaussian smoothing operator for 𝜎 > 0
on distributions 𝑄 over 𝒲 as

𝐺𝜎𝑄 = Law(𝑊 + 𝜎𝜉)

▪ Define the smoothed relative entropy as
𝒟𝜎 𝑄 𝑄′ = 𝒟KL 𝐺𝜎𝑄 𝐺𝜎𝑄

′

and the smoothed total variation distance as
𝑄 − 𝑄′

𝜎 = 𝐺𝜎𝑄 − 𝐺𝜎𝑄
′
TV

(𝑊 ∼ 𝑄, 𝜉 ∼ 𝒩 0, 𝐼 )



Smoothing is cool

1

2
𝑄 − 𝑄′

𝜎
2 ≤ 𝒟𝜎 𝑄 𝑄′ ≤

1

2𝜎2
𝕎2

2(𝑄, 𝑄′)
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Theorem
For any learning algorithm 𝒜, 

𝔼 gen 𝑊𝑛, 𝑆𝑛 ≤

1
𝜎2

𝔼 𝕎2
2 𝑃𝑊𝑛|𝑆𝑛 , 𝑃𝑊𝑛

𝔼 ℓ ⋅, 𝑍′ 𝜎,∗
2

𝑛
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When is this small??
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𝜎2

Generalization error of 𝒪 𝑅𝛽 𝑑/𝑛

when all 𝑊’s have norm bounded by 𝑅!



Outline

▪Supervised learning crash course

▪Beyond “information theoretic” generalization

▪Generalization bounds via convex analysis

▪ Classic examples: relative entropy, 𝜒2, 𝑝-norm…

▪New (and cool?) example: smoothed relative entropy

▪ Some words about the proof
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Proof idea: 
A reduction to online learning

The generalization game

For each 𝑡 = 1,2, … , 𝑛, repeat
• Online learner picks ෨𝑃𝑡 = Law( ෩𝑊𝑡 , 𝑆𝑛) ∈ Δ𝑛 ⊂ 𝒫(𝒲 × 𝒮)

• Online learner gains reward ෨𝑃𝑡 , തℓ𝑡 = 𝔼 ℓ ෩𝑊𝑡 , 𝑍𝑡 − ℓ ෩𝑊𝑡 , 𝑍
′
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σ𝑡=1
𝑛 ⟨ ෨𝑃𝑡, തℓ𝑡⟩
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▪We “run” FTRL in the generalization game:

෨𝑃𝑡 = arg max
𝑃∈Δ𝑛

𝜂 𝑃, σ𝑘=1
𝑡−1 ℓ𝑡 − 𝐻 𝑃

Proof idea II:
“Follow the Regularized Leader”
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▪Hard part: show the gain of online learner is zero:
෨𝑃𝑡 , തℓ𝑡 = 𝔼 ℓ ෩𝑊𝑡 , 𝑍𝑡 − ℓ ෩𝑊𝑡 , 𝑍

′ = 0
▪ Ingredients: tricky choice of Δ𝑛 and 𝐻 and exploiting i.i.d.-ness of data

Proof idea II:
“Follow the Regularized Leader”



▪ Define ghost samples 𝑆𝑛
′ = 𝑍1

′ , 𝑍2
′ , … , 𝑍𝑛

′

▪ For all 𝑖, define
▪ “mixed bag” 𝑆(𝑖) = 𝑍1, 𝑍2, … , 𝑍𝑖 , 𝑍𝑖+1

′ , … , 𝑍𝑛
′

▪ 𝑊𝑖 = 𝒜 𝑆 𝑖

▪ 𝑃𝑖 = law 𝑊𝑖 , 𝑆𝑛
▪ Δ𝑖 = conv 𝑃0, 𝑃1, … , 𝑃𝑖

Proof idea III:
Construction of Δ𝑛



▪ Two ingredients for showing ෨𝑃𝑡 , തℓ𝑡 = 0:
▪ ෨𝑃𝑡 ∈ Δ𝑡−1 (by construction of 𝐻 and Δ𝑖 𝑖):

▪ 𝑃𝑡−1, 𝐿𝑡−1 = 𝑃𝑡, 𝐿𝑡−1 = ⋯ = 𝑃𝑛, 𝐿𝑡−1
▪ 𝐻 𝑃𝑡−1 ≤ 𝐻 𝑃𝑡 ≤ ⋯ ≤ 𝐻 𝑃𝑛 (Jensen’s inequality)

▪ For all ෨𝑃 = law ෩𝑊, 𝑆𝑛 ∈ Δ𝑡−1, we have
෨𝑃, തℓ𝑡 = 𝔼 ℓ ෩𝑊,𝑍𝑡 = 0

(thanks to the independence of ෩𝑊 and 𝑍𝑡)

Proof idea IV:
Finishing up
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What did we learn & what next?

▪We can go beyond standard “information-theoretic” techniques!

▪ Tradeoffs around strong convexity:
▪ Large 𝛼 → large 𝐻 𝑃𝑛
▪ Small ℓ ∗ → large 𝐻 𝑃𝑛



What did we learn & what next?

▪We can go beyond standard “information-theoretic” techniques!

▪ Tradeoffs around strong convexity:
▪ Large 𝛼 → large 𝐻 𝑃𝑛
▪ Small ℓ ∗ → large 𝐻 𝑃𝑛

▪ Examples:
▪ Boring: relative entropy, 𝑝-norm…

▪ Cool: Smoothed relative entropy

▪ What else? Wasserstein, Fisher…?

▪High-probability bounds?



Thanks!!
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Proof idea

▪ Define potential function
Φ 𝜂𝐿𝑛 = sup

𝑃∈Δ𝑛

𝜂 𝑃, 𝐿𝑛 − 𝐻 𝑃

▪ For all 𝑖 ∈ 𝑛 , define 𝐿𝑖(𝑤, 𝑠) =
1

𝑛
σ𝑘=1
𝑖 ℓ (𝑤, 𝑧𝑘)

▪ Decompose potential: Φ 𝜂𝐿𝑛 = σ𝑖=1
𝑛 Φ 𝜂𝐿𝑖 −Φ 𝜂𝐿𝑖−1

(for strongly convex 𝐻)
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Construction of Δ𝑛

▪ Define ghost samples 𝑆𝑛
′ = 𝑍1

′ , 𝑍2
′ , … , 𝑍𝑛

′

▪ For all 𝑖, define

▪ “mixed bag” 𝑆(𝑖) = 𝑍1, 𝑍2, … , 𝑍𝑖 , 𝑍𝑖+1
′ , … , 𝑍𝑛

′

▪𝑊𝑖 = 𝒜 𝑆 𝑖

▪𝑃𝑖 = law 𝑊𝑖 , 𝑆𝑛
▪ Δ𝑖 = conv 𝑃0, 𝑃1, … , 𝑃𝑖



Finishing up

▪ Three ingredients for showing ∇Φ 𝜂𝐿𝑖−1 , 𝜂𝐿𝑖 − 𝜂𝐿𝑖−1 = 0:

▪ ∇Φ 𝜂𝐿𝑖−1 = argmax𝑃∈Δ𝑛{𝜂 𝑃, 𝐿𝑖−1 − 𝐻 𝑃 } (Danskin’s theorem)

▪Maximizer is in Δ𝑖−1 (by construction of 𝐻 and Δ𝑖 𝑖):

▪ 𝑃𝑖−1, 𝐿𝑖−1 = 𝑃𝑖 , 𝐿𝑖−1 = ⋯ = 𝑃𝑛, 𝐿𝑖−1
▪ 𝐻 𝑃𝑖−1 ≤ 𝐻 𝑃𝑖 ≤ ⋯ ≤ 𝐻 𝑃𝑛

▪ For all ෨𝑃 = law ෩𝑊, 𝑆𝑛 ∈ Δ𝑖−1, we have

෨𝑃, 𝜂𝐿𝑖 − 𝜂𝐿𝑖−1 =
𝜂

𝑛
𝔼 ℓ ෩𝑊, 𝑍𝑖 = 0

(thanks to the independence of ෩𝑊 and 𝑍𝑖)
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Strong convexity of 𝒟𝜎

Proof steps:

▪ The Bregman divergence of ℎ is ℬℎ 𝑄 𝑄′ = 𝒟𝜎 𝑄 𝑄′

▪ Pinsker’s inequality:

𝒟𝜎 𝑄 𝑄′ = 𝒟KL 𝐺𝜎𝑄 𝐺𝜎𝑄′ ≥
1

2
𝐺𝜎𝑄 − 𝐺𝜎𝑄

′
TV
2 =

1

2
𝑄 − 𝑄′ 𝜎

2

Lemma
The function ℎ 𝑄 = 𝒟𝜎 𝑄 𝑃𝑊𝑛

is 1-strongly convex 

with respect to the smoothed total variation distance.



Boundedness of 𝒟𝜎

Lemma
The smoothed relative entropy is upper-bounded by the 

squared Wasserstein-2 distance: 𝒟𝜎 𝑄 𝑄′ ≤
1

2𝜎2
𝕎2

2(𝑄, 𝑄′)

Proof steps:

▪ Let 𝜋 be the coupling of 𝑄 and 𝑄′ that achieves the infimum in the def. of 𝕎2

▪ 𝒟𝜎 𝑄 𝑄′ = 𝒟KL ∫𝒲𝒩 𝑤,𝜎2𝐼 d𝜋 𝑤,𝑤′ ∫𝒲𝒩 𝑤′, 𝜎2𝐼 d𝜋 𝑤,𝑤′

≤ න
𝒲

𝒟KL 𝒩 𝑤,𝜎2𝐼 𝒩 𝑤′, 𝜎2𝐼 d𝜋 𝑤,𝑤′ = න
𝒲

1

2𝜎2
𝑤 −𝑤′ 2 d𝜋 𝑤,𝑤′

Jensen’s inequality + joint convexity of 𝒟KL


