Generalization Bounds via Convex Analysis

joint work with Gábor Lugosi

Funded by ERC StG

Outline

- Supervised learning crash course
- Beyond "information theoretic" generalization
- Generalization bounds via convex analysis
- Classic examples: relative entropy, χ^2 , *p*-norm...
- New (and cool?) example: smoothed relative entropy
- Some words about the proof

Outline

- Supervised learning crash course
- Beyond "information theoretic" generalization
- Generalization bounds via convex analysis
- Classic examples: relative entropy, χ^2 , *p*-norm...
- New (and cool?) example: smoothed relative entropy
- Some words about the proof

Setup: Supervised learning

- Data set: $S_n = \{Z_i\}_{i=1}^n \in \mathbb{Z}^n = S$, drawn i.i.d. $\sim \mu$ ■ e.g., regression: $Z_i = (X_i, Y_i)$ with $X_i \in \mathbb{R}^m$ and $Y_i \in \mathbb{R}$
- Hypothesis class: *W*
 - e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}$
 - e.g., square loss: $\ell(w, (x, y)) = (f(w, x) y)^2$
- Learning algorithm $\mathcal{A}: S \to W$ produces hypothesis $W_n = \mathcal{A}(S_n)$

Setup: Supervised learning

- Data set: $S_n = \{Z_i\}_{i=1}^n \in \mathbb{Z}^n = S$, drawn i.i.d. $\sim \mu$ ■ e.g., regression: $Z_i = (X_i, Y_i)$ with $X_i \in \mathbb{R}^m$ and $Y_i \in \mathbb{R}$
- Hypothesis class: *W*
 - e.g., neural network weights
- Loss function: $\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}$
 - e.g., square loss: $\ell(w, (x, y)) = (f(w, x) y)^2$
- Learning algorithm $\mathcal{A}: S \to \mathcal{W}$ produces hypothesis $W_n = \mathcal{A}(S_n)$

Generalization error: $gen(W_n, S_n) = \frac{1}{n} \sum_{i=1}^n (\ell(W_n, Z_i) - \mathbb{E}[\ell(W_n, Z') | W_n])$

Information-theoretic generalization

Theorem

(Russo & Zou, 2016, Xu & Raginsky, 2017) Suppose that $\ell(w, Z)$ is σ -subgaussian for all $w \in \mathcal{W}$. Then, for any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \sqrt{\frac{2\sigma^2 \mathcal{D}_{\mathrm{KL}}(P_{W_n, S_n} | P_{W_n} \otimes P_{S_n})}{n}}$$

Information-theoretic generalization

Theorem

(Russo & Zou, 2016, Xu & Raginsky, 2017) Suppose that $\ell(w, Z)$ is σ -subgaussian for all $w \in \mathcal{W}$. Then, for any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \le \sqrt{\frac{2\sigma^2 \mathcal{D}_{\mathrm{KL}}(P_{W_n, S_n} | P_{W_n} \otimes P_{S_n})}{n}}$$

What's special about \mathcal{D}_{KL} ?

More concretely:

Can we replace \mathcal{D}_{KL} by another function H and get

$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \varepsilon$

(picture unrelated)

More concretely:

Outline

- Supervised learning crash course
- Beyond "information theoretic" generalization
- Generalization bounds via convex analysis
- Classic examples: relative entropy, χ^2 , *p*-norm...
- New (and cool?) example: smoothed relative entropy
- Some words about the proof

• $\Delta = \{ \text{distributions } P \text{ on } \mathcal{W} \times \mathcal{S} \text{ with } \mathcal{S} \text{ -marginal } \mu^{\otimes n} \}$

• Important special choices: $P_n = P_{W_n,S_n}$ and $\overline{P}_n = P_{W_n} \otimes P_{S_n}$

• $\mathcal{F} = \{ \text{bounded measurable functions } f : \mathcal{W} \times \mathcal{S} \to \mathbb{R} \}$

- $\Delta = \{ \text{distributions } P \text{ on } \mathcal{W} \times \mathcal{S} \text{ with } \mathcal{S} \text{ -marginal } \mu^{\otimes n} \}$
 - Important special choices: $P_n = P_{W_n,S_n}$ and $\overline{P}_n = P_{W_n} \otimes P_{S_n}$
- $\mathcal{F} = \{ \text{bounded measurable functions } f : \mathcal{W} \times S \to \mathbb{R} \}$
- For any $P \in \Delta$ and $f \in \mathcal{F}$, define $\langle P, f \rangle = \mathbb{E}_{(W,S)\sim P}[f(W,S)]$

• $\Delta = \{ \text{distributions } P \text{ on } \mathcal{W} \times \mathcal{S} \text{ with } \mathcal{S} \text{ -marginal } \mu^{\otimes n} \}$

- Important special choices: $P_n = P_{W_n,S_n}$ and $\overline{P}_n = P_{W_n} \otimes P_{S_n}$
- $\mathcal{F} = \{ \text{bounded measurable functions } f : \mathcal{W} \times S \to \mathbb{R} \}$
- For any $P \in \Delta$ and $f \in \mathcal{F}$, define $\langle P, f \rangle = \mathbb{E}_{(W,S)\sim P}[f(W,S)]$
- Centered loss: $\overline{\ell}(w, z) = \ell(w, z) \mathbb{E}[\ell(w, Z')]$
- Centered average loss: $\overline{L}_n(w,s) = \frac{1}{n} \sum_{i=1}^n \overline{\ell}(w,z_i)$

• $\Delta = \{ \text{distributions } P \text{ on } \mathcal{W} \times \mathcal{S} \text{ with } \mathcal{S} \text{ -marginal } \mu^{\otimes n} \}$

- Important special choices: $P_n = P_{W_n,S_n}$ and $\overline{P}_n = P_{W_n} \otimes P_{S_n}$
- $\mathcal{F} = \{ \text{bounded measurable functions } f : \mathcal{W} \times S \to \mathbb{R} \}$

• For any
$$P \in \Delta$$
 and $f \in \mathcal{F}$, define
 $\langle P, f \rangle = \mathbb{E}_{(W,S)\sim P}[f(W,S)]$

• Centered loss: $\overline{\ell}(w, z) = \ell(w, z) - \mathbb{E}[\ell(w, Z')]$

• Centered average loss: $\overline{L}_n(w,s) = \frac{1}{n} \sum_{i=1}^n \overline{\ell}(w,z_i)$

Expected generalization error: $\mathbb{E}[gen(W_n, S_n)] = \langle P_n, \overline{L}_n \rangle$

Notation++

• Let
$$H: \Delta \to \mathbb{R}_+$$
 be convex: $\forall P, P' \in \Delta, \lambda \in [0,1]$:
 $H(\lambda P + (1 - \lambda)P') \le \lambda H(P) + (1 - \lambda)H(P')$

• Legendre–Fenchel conjugate of H defined for all $f \in \mathcal{F}$ as $H^*(f) = \sup_{P \in \Delta} \{ \langle P, f \rangle - H(P) \}$

• Fenchel–Young inequality: for any $P \in \Delta$ and $f \in \mathcal{F}$, $\langle P, f \rangle \leq H(P) + H^*(f)$

A generalization bound

For any $\eta \in \mathbb{R}$: $\eta \langle P_{W_n,S_n}, \overline{L}_n \rangle \leq H(P_{W_n,S_n}) + H^*(\eta \overline{L}_n)$

A generalization bound

For any
$$\eta \in \mathbb{R}$$
:
 $\eta \langle P_{W_n,S_n}, \overline{L}_n \rangle \leq H(P_{W_n,S_n}) + H^*(\eta \overline{L}_n)$

When can this be $O(\eta^2/n)$?

(that would imply a bound of order $\frac{H(P_n)}{\eta} + \frac{C\eta}{n} \sim \sqrt{\frac{CH(P_n)}{n}}$)

Example 1: relative entropy

- $H(P) = \mathcal{D}_{\mathrm{KL}}(P|\overline{P}_n)$
- Conjugate: $H^*(f) = \log \mathbb{E}_{W_n, S'_n} \left[\exp(f(W_n, S'_n)) \right]$ (Donsker-Varadhan formula)
- Applied to $\eta \overline{L}_n$:

$$H^*(\eta \overline{L}_n) = \log \mathbb{E}_{W_n, S'_n} \left[\exp\left(\frac{\eta}{n} \sum_{i=1}^n \overline{\ell}(W_n, Z'_i)\right) \right] \le \frac{\eta^2 \sigma^2}{n}$$

Example 1: relative entropy

- $H(P) = \mathcal{D}_{\mathrm{KL}}(P|\overline{P}_n)$
- Conjugate: $H^*(f) = \log \mathbb{E}_{W_n, S'_n} \left[\exp(f(W_n, S'_n)) \right]$ (Donsker-Varadhan formula)
- Applied to $\eta \overline{L}_n$:

$$H^*(\eta \overline{L}_n) = \log \mathbb{E}_{W_n, S'_n} \left[\exp\left(\frac{\eta}{n} \sum_{i=1}^n \overline{\ell}(W_n, Z'_i)\right) \right] \le \frac{\eta^2 \sigma^2}{n}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{\mathcal{D}_{\mathrm{KL}}(P_n | \overline{P}_n)}{\eta} + \frac{\eta \sigma^2}{n} \sim \sqrt{\frac{\sigma^2 \mathcal{D}_{\mathrm{KL}}(P_n | \overline{P}_n)}{n}}$$

Example 2: χ^2 -divergence

•
$$H(P) = \mathcal{D}_{\chi^2}(P|\overline{P}_n) = \int \frac{(\mathrm{d}P - \mathrm{d}\overline{P}_n)^2}{\mathrm{d}\overline{P}_n}$$

- Conjugate: $H^*(f) = \mathbb{E}_{W_n, S'_n}[(f(W_n, S'_n) \mathbb{E}[f(W_n, S'_n)])^2]$
- Applied to $\eta \overline{L}_n$:

$$H^*(\eta \overline{L}_n) = \mathbb{E}_{W_n, S'_n} \left[\left(\frac{\eta}{n} \sum_{i=1}^n \left(\overline{\ell}(W_n, Z'_i) - \mathbb{E}\left[\overline{\ell}(W_n, Z'_i) \right] \right) \right)^2 \right] = \frac{\eta^2 \operatorname{Var}\left[\overline{\ell}(W_n, Z') \right]}{n}$$

Example 2: χ^2 -divergence

•
$$H(P) = \mathcal{D}_{\chi^2}(P|\overline{P}_n) = \int \frac{(\mathrm{d}P - \mathrm{d}\overline{P}_n)^2}{\mathrm{d}\overline{P}_n}$$

- Conjugate: $H^*(f) = \mathbb{E}_{W_n, S'_n}[(f(W_n, S'_n) \mathbb{E}[f(W_n, S'_n)])^2]$
- Applied to $\eta \overline{L}_n$:

$$H^*(\eta \overline{L}_n) = \mathbb{E}_{W_n, S'_n} \left[\left(\frac{\eta}{n} \sum_{i=1}^n \left(\overline{\ell}(W_n, Z'_i) - \mathbb{E}[\overline{\ell}(W_n, Z'_i)] \right) \right)^2 \right] = \frac{\eta^2 \operatorname{Var}[\overline{\ell}(W_n, Z')]}{n}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{\mathcal{D}_{\chi^2}(P_n | \overline{P}_n)}{\eta} + \frac{\eta \operatorname{Var}[\overline{\ell}(W_n, Z')]}{n} \sim \sqrt{\frac{\operatorname{Var}[\overline{\ell}(W_n, Z')]\mathcal{D}_{\chi^2}(P_n | \overline{P}_n)}{n}}$$

(Is this known?)

• We will consider functions H of the form $H(P) = \mathbb{E}_{S}[h(P_{|S})],$

where

• $P_{|s}$ is the conditional distribution of W|S = s under $(W, S) \sim P$

• *h* is a convex function acting on distributions over \mathcal{W} : $\forall Q, Q' \in \text{Dist}(\mathcal{W}), \lambda \in [0,1]$: $h(\lambda Q + (1 - \lambda)Q') \leq \lambda h(Q) + (1 - \lambda)h(Q')$

• We will consider functions H of the form $H(P) = \mathbb{E}_{S}[h(P_{|S})],$

where

• $P_{|s}$ is the conditional distribution of W|S = s under $(W, S) \sim P$

• h is a convex function acting on distributions over W: ∀Q, Q' ∈ Dist(W), λ ∈ [0,1]: h(λQ + (1 − λ)Q') ≤ λh(Q) + (1 − λ)h(Q')

• h is α -strongly convex wrt some norm $\|\cdot\|^2$: $\forall Q, Q' \in \text{Dist}(\mathcal{W}), \lambda \in [0,1]$:

 $h(\lambda Q + (1-\lambda)Q') \le \lambda h(Q) + (1-\lambda)h(Q') - \frac{\alpha\lambda(1-\lambda)}{2} \|Q - Q'\|^2$

• We will consider functions H of the form $H(P) = \mathbb{E}_{S}[h(P_{|S})],$

where

P_{Is} is the c

Terminology:

 \boldsymbol{P}

h is a conv ∀Q,Q'
 H: "dependence measure"
 h: "conditional dependence measure"

• *h* is α -strongly convex wrt some norm $\|\cdot\|^2$: $\forall Q, Q' \in \text{Dist}(\mathcal{W}), \lambda \in [0,1]$:

 $h(\lambda Q + (1-\lambda)Q') \le \lambda h(Q) + (1-\lambda)h(Q') - \frac{\alpha\lambda(1-\lambda)}{2} \|Q - Q'\|^2$

Main result

Dual norm: $\|\ell(\cdot, Z)\|_* = \sup_{Q-Q': \|Q-Q'\|=1} \langle Q-Q', \ell(\cdot, Z) \rangle$

Basic examples

Relative entropy

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n, S_n} | P_{W_n} \otimes P_{S_n}) \mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_{\infty}^2}{n}}{p \operatorname{-norm with } p \in (1, 2]}}$$
$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^2\right] \mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^2\right]}{(p - 1)n}}}{(p - 1)n}$$

 $\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{p \operatorname{-norm with} p > 2}{(p \operatorname{-} 1)n^{1/p}}$

Basic examples

Relative entropy

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n, S_n} | P_{W_n} \otimes P_{S_n}) \mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_{\infty}^2\right]}{n}}$$

$$p\operatorname{-norm with} p \in (1, 2]$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^2\right] \mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^2\right]}{(p-1)n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{2p\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^p\right] \mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^q\right]}{(p-1)n^{1/p}}$$

Basic examples

Relative entropy

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathcal{D}_{\mathrm{KL}}(P_{W_n, S_n} | P_{W_n} \otimes P_{S_n})\mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_{\infty}^2\right]}{n}}$$

$$p-\operatorname{norm} \operatorname{with} p \in (1, 2]$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \sqrt{\frac{4\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^2\right]\mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^2\right]}{(p-1)n}}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{2p\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^p\right]\mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^2\right]}{(p-1)n}$$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] \leq \frac{2p\mathbb{E}\left[\left\|P_{W_n | S_n} - P_{W_n}\right\|_p^p\right]\mathbb{E}\left[\left\|\overline{\ell}(\cdot, Z')\right\|_q^2\right]}{(p-1)n^{1/p}}$$

()

unt

Outline

- Supervised learning crash course
- Beyond "information theoretic" generalization
- Generalization bounds via convex analysis
- Classic examples: relative entropy, χ^2 , *p*-norm...
- New (and cool?) example: smoothed relative entropy
- Some words about the proof

The smoothed relative entropy

• Let $\mathcal{W} = \mathbb{R}^d$ and define the Gaussian smoothing operator for $\sigma > 0$ on distributions Q over \mathcal{W} as $G_{\sigma}Q = \operatorname{Law}(W + \sigma\xi) \quad (W \sim Q, \xi \sim \mathcal{N}(0, I))$

The smoothed relative entropy

• Let $\mathcal{W} = \mathbb{R}^d$ and define the Gaussian smoothing operator for $\sigma > 0$ on distributions Q over \mathcal{W} as

 $G_{\sigma}Q = \operatorname{Law}(W + \sigma\xi) \qquad (W \sim Q, \xi \sim \mathcal{N}(0, I))$

• Define the smoothed relative entropy as $\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}(G_{\sigma}Q|G_{\sigma}Q')$ and the smoothed total variation distance as $\|Q - Q'\|_{\sigma} = \|G_{\sigma}Q - G_{\sigma}Q'\|_{\mathrm{TV}}$

Smoothing is cool

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

Theorem

For any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \sqrt{\frac{\frac{1}{\sigma^2} \mathbb{E}\left[\mathbb{W}_2^2 \left(P_{W_n | S_n}, P_{W_n}\right)\right] \mathbb{E}\left[\|\ell(\cdot, Z')\|_{\sigma, *}^2\right]}{n}}$$

$$\frac{1}{2} \|Q - Q'\|_{\sigma}^2 \leq \mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$$

Theorem

For any learning algorithm \mathcal{A} ,

$$|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \sqrt{\frac{\frac{1}{\sigma^2} \mathbb{E}\left[\mathbb{W}_2^2 \left(P_{W_n | S_n}, P_{W_n}\right)\right] \mathbb{E}\left[\|\ell(\cdot, Z')\|_{\sigma,*}^2\right]}{n}}$$

$$When is this small??$$

The dual norm $\|\cdot\|_{\sigma,*}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $|D^k f(w)| \le \beta_k$. Then, $||f||_{\sigma,*} \le \sum_{k=0}^{\infty} (\sigma \sqrt{d})^k \beta_k$.

The dual norm $\|\cdot\|_{\sigma,*}$

Lemma

Suppose that f is infinitely smooth in the sense that all for all k, all of its partial derivatives of order k are bounded as $|D^k f(w)| \leq \beta_k$. Then, $||f||_{\sigma_{*}} \leq \sum_{k=0}^{\infty} (\sigma \sqrt{d})^{k} \beta_{k}$.

Theorem

Suppose that $\ell(\cdot, z)$ is infinitely smooth with $\beta_k \leq \beta$ ($\forall k$). Then,

 $|\mathbb{E}[\operatorname{gen}(W_n, S_n)]| \leq \sqrt{\frac{8\beta^2 d\mathbb{E}\left[\mathbb{W}_2^2(P_{W_n|S_n}, P_{W_n})\right]}{n}}$

The dual norm $\|\cdot\|_{\sigma,*}$

Outline

- Supervised learning crash course
- Beyond "information theoretic" generalization
- Generalization bounds via convex analysis
- Classic examples: relative entropy, χ^2 , *p*-norm...
- New (and cool?) example: smoothed relative entropy
- Some words about the proof

Generalization Bounds via Convex Analysis

joint work with Gábor Lugosi

Funded by ERC StG

Generalization Bounds

Gergely Neu

joint work with Gábor Lugosi

Funded by ERC StG

Proof idea: A reduction to online learning

The generalization game

For each t = 1, 2, ..., n, repeat

- Online learner picks $\tilde{P}_t = \text{Law}(\tilde{W}_t, S_n) \in \Delta_n \subset \mathcal{P}(\mathcal{W} \times \mathcal{S})$
- Online learner gains reward $\langle \tilde{P}_t, \overline{\ell}_t \rangle = \mathbb{E}[\ell(\tilde{W}_t, Z_t) \ell(\tilde{W}_t, Z')]$

Proof idea: A reduction to online learning

The generalization game

For each t = 1, 2, ..., n, repeat

- Online learner picks $\tilde{P}_t = \text{Law}(\tilde{W}_t, S_n) \in \Delta_n \subset \mathcal{P}(\mathcal{W} \times \mathcal{S})$
- Online learner gains reward $\langle \tilde{P}_t, \overline{\ell}_t \rangle = \mathbb{E}[\ell(\tilde{W}_t, Z_t) \ell(\tilde{W}_t, Z')]$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] = \frac{1}{n} \sum_{t=1}^n \langle P_{W_n, S_n} - \tilde{P}_t, \overline{\ell}_t \rangle + \frac{1}{n} \sum_{t=1}^n \langle \tilde{P}_t, \overline{\ell}_t \rangle$$

Proof idea: A reduction to online learning

The generalization game

For each $t = 1, 2, \dots, n$, repeat

- Online learner picks $\tilde{P}_t = \text{Law}(\tilde{W}_t, S_n) \in \Delta_n \subset \mathcal{P}(\mathcal{W} \times \mathcal{S})$
- Online learner gains reward $\langle \tilde{P}_t, \overline{\ell}_t \rangle = \mathbb{E}[\ell(\tilde{W}_t, Z_t) \ell(\tilde{W}_t, Z')]$

$$\mathbb{E}[\operatorname{gen}(W_n, S_n)] = \frac{1}{n} \sum_{t=1}^n \langle P_{W_n, S_n} - \tilde{P}_t, \overline{\ell}_t \rangle + \frac{1}{n} \sum_{t=1}^n \langle \tilde{P}_t, \overline{\ell}_t \rangle$$

 $R_T = \text{Regret of online learner}$

 G_T = Total gain of online learner

Proof idea II: "Follow the Regularized Leader"

• We "run" FTRL in the generalization game: $\tilde{P}_t = \arg \max_{P \in \Delta_n} \{\eta \langle P, \sum_{k=1}^{t-1} \overline{\ell}_t \rangle - H(P) \}$

Proof idea II: "Follow the Regularized Leader"

We "run" FTRL in the generalization game: $\widetilde{P}_t = \arg \max_{P \in \Delta_n} \{\eta \langle P, \sum_{k=1}^{t-1} \overline{\ell}_t \rangle - H(P)\}$ Bound the regret of FTRL using the classic analysis:

$$R_T \leq \frac{H(P_n)}{\eta} + \eta \sum_{t=1}^{\infty} \mathbb{E}\left[\left\|\overline{\ell}_t(\cdot, Z')\right\|_*^2\right] \sim \sqrt{nH(P_n)\mathbb{E}\left[\left\|\overline{\ell}_t(\cdot, Z')\right\|_*^2\right]}$$

Proof idea II: "Follow the Regularized Leader"

We "run" FTRL in the generalization game:

$$\tilde{P}_t = \arg \max_{P \in \Delta_n} \{ \eta \langle P, \sum_{k=1}^{t-1} \overline{\ell}_t \rangle - H(P) \}$$

• Bound the regret of FTRL using the classic analysis: $R_T \leq \frac{H(P_n)}{\eta} + \eta \sum_{t=1}^n \mathbb{E}\left[\left\|\overline{\ell}_t(\cdot, Z')\right\|_*^2\right] \sim \sqrt{nH(P_n)\mathbb{E}\left[\left\|\overline{\ell}_t(\cdot, Z')\right\|_*^2\right]}$

Hard part: show the gain of online learner is zero:

$$\langle \tilde{P}_t, \overline{\ell}_t \rangle = \mathbb{E} \left[\ell \left(\widetilde{W}_t, Z_t \right) - \ell \left(\widetilde{W}_t, Z' \right) \right] = 0$$

Ingredients: tricky choice of Δ_n and H and exploiting i.i.d.-ness of data

Proof idea III: Construction of Δ_n

- Define ghost samples $S'_n = \{Z'_1, Z'_2, \dots, Z'_n\}$
- For all *i*, define
 - "mixed bag" $S^{(i)} = \{Z_1, Z_2, \dots, Z_i, Z'_{i+1}, \dots, Z'_n\}$
 - $W_i = \mathcal{A}(S^{(i)})$
 - $P_i = \operatorname{law}(W_i, S_n)$
 - $\bullet \Delta_i = \operatorname{conv}(\{P_0, P_1, \dots, P_i\})$

Proof idea IV: Finishing up

• Two ingredients for showing $\langle \tilde{P}_t, \overline{\ell}_t \rangle = 0$:

• $\tilde{P}_t \in \Delta_{t-1}$ (by construction of H and $\{\Delta_i\}_i$):

•
$$\langle P_{t-1}, \overline{L}_{t-1} \rangle = \langle P_t, \overline{L}_{t-1} \rangle = \cdots = \langle P_n, \overline{L}_{t-1} \rangle$$

• $H(P_{t-1}) \le H(P_t) \le \dots \le H(P_n)$ (Jensen's inequality)

• For all $\tilde{P} = \text{law}(\tilde{W}, S_n) \in \Delta_{t-1}$, we have $\langle \tilde{P}, \overline{\ell}_t \rangle = \mathbb{E}[\overline{\ell}(\tilde{W}, Z_t)] = 0$ (thanks to the independence of \tilde{W} and Z_t)

Proof idea IV: Finishing up

• Two ingredients for showing $\langle \tilde{P}_t, \overline{\ell}_t \rangle = 0$:

• $\tilde{P}_t \in \Delta_{t-1}$ (by construction of H and $\{\Delta_i\}_i$):

•
$$\langle P_{t-1}, \overline{L}_{t-1} \rangle = \langle P_t, \overline{L}_{t-1} \rangle = \cdots = \langle P_n, \overline{L}_{t-1} \rangle$$

• $H(P_{t-1}) \le H(P_t) \le \dots \le H(P_n)$ (Jensen's inequality)

• For all $\tilde{P} = \text{law}(\tilde{W}, S_n) \in \Delta_{t-1}$, we have $\langle \tilde{P}, \overline{\ell}_t \rangle = \mathbb{E}[\overline{\ell}(\tilde{W}, Z_t)] = 0$ (thanks to the independence of \tilde{W} and Z_t)

What did we learn & what next?

- We can go beyond standard "information-theoretic" techniques!
- Tradeoffs around strong convexity:
 - Large $\alpha \rightarrow \text{large } H(P_n)$
 - Small $\|\ell\|_* \to \text{large } H(P_n)$

What did we learn & what next?

- We can go beyond standard "information-theoretic" techniques!
- Tradeoffs around strong convexity:
 - Large $\alpha \rightarrow \text{large } H(P_n)$
 - Small $\|\ell\|_* \to \text{large } H(P_n)$
- Examples:
 - Boring: relative entropy, p-norm...
 - Cool: Smoothed relative entropy
 - What else? Wasserstein, Fisher...?
- High-probability bounds?

Thanks!

Appendix

Define potential function $\Phi(\eta \overline{L}_n) = \sup_{P \in \Delta_n} \{\eta \langle P, \overline{L}_n \rangle - H(P)\}$ For all $i \in [n]$, define $\overline{L}_i(w, s) = \frac{1}{n} \sum_{k=1}^i \overline{\ell}(w, z_k)$ Decompose potential: $\Phi(\eta \overline{L}_n) = \sum_{i=1}^n \left(\Phi(\eta \overline{L}_i) - \Phi(\eta \overline{L}_{i-1})\right)$

- Define potential function $\Phi(\eta \overline{L}_n) = \sup_{P \in \Delta_n} \{\eta \langle P, \overline{L}_n \rangle - H(P)\}$
- For all $i \in [n]$, define $\overline{L}_i(w, s) = \frac{1}{n} \sum_{k=1}^{i} \overline{\ell}(w, z_k)$
- Decompose potential: $\Phi(\eta \overline{L}_n) = \sum_{i=1}^n \left(\Phi(\eta \overline{L}_i) \Phi(\eta \overline{L}_{i-1}) \right)$
- Use the convexity + smoothness of $\Phi = H^*$:

$$\Phi(\eta \overline{L}_{i}) \leq \Phi(\eta \overline{L}_{i-1}) + \langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \rangle + \frac{\left\| \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \right\|_{*}^{2}}{2\alpha}$$

- Define potential function $\Phi(\eta \overline{L}_n) = \sup_{P \in \Delta_n} \{\eta \langle P, \overline{L}_n \rangle - H(P)\}$ For all $i \in [n]$, define $\overline{L}_i(w, s) = \frac{1}{n} \sum_{k=1}^i \overline{\ell}(w, z_k)$
- Decompose potential: $\Phi(\eta \overline{L}_n) = \sum_{i=1}^n \left(\Phi(\eta \overline{L}_i) \Phi(\eta \overline{L}_{i-1}) \right)$
- Use the convexity + smoothness of $\Phi = H^*$:

$$\Phi(\eta \overline{L}_{i}) \leq \Phi(\eta \overline{L}_{i-1}) + \langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \rangle + \frac{\left\| \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \right\|_{*}^{2}}{2\alpha}$$

Zαn²

• Define potential function $\Phi(\eta \overline{L}_n) = \sup_{P \in \Delta_n} \{\eta \langle P, \overline{L}_n \rangle - H(P)\}$ • For all $i \in [n]$, define $\overline{L}_i(w, s) = \frac{1}{n} \sum_{k=1}^i \overline{\ell}(w, z_k)$ • Decompose potential: $\Phi(\eta \overline{L}_n) = \sum_{i=1}^n (\Phi(\eta \overline{L}_i) - \Phi(\eta \overline{L}_{i-1}))$ • Use the convexity + smoothness of $\Phi = H^*$:

$$\Phi(\eta \overline{L}_{i}) \leq \Phi(\eta \overline{L}_{i-1}) + \langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \rangle + \frac{\left\| \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \right\|_{*}^{2}}{2\alpha} = \frac{\eta^{2} \left\| \overline{\ell} \right\|_{*}^{2}}{2\alpha}$$

Define potential function $\Phi(\eta \overline{L}_n) = \sup_{P \in \Delta_n} \{\eta \langle P, \overline{L}_n \rangle - H(P)\}$ • For all $i \in [n]$, define $\overline{L}_i(w, s) = \frac{1}{n} \sum_{k=1}^{i} \overline{\ell}(w, z_k)$ • Decompose potential: $\Phi(\eta \overline{L}_n) = \sum_{i=1}^n \left(\Phi(\eta \overline{L}_i) - \Phi(\eta \overline{L}_{i-1}) \right)$ • Use the convexity + smoothness of $\Phi = H^*$: $\Phi(\eta \overline{L}_{i}) \leq \Phi(\eta \overline{L}_{i-1}) + \langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \rangle + \frac{\left\| \eta \overline{L}_{i} - \eta \overline{L}_{i-1} \right\|_{*}^{2}}{2\alpha} \eta^{2} \left\| \overline{\ell} \right\|^{2}$

Construction of Δ_n

- Define ghost samples $S'_n = \{Z'_1, Z'_2, \dots, Z'_n\}$
- For all *i*, define
 - "mixed bag" $S^{(i)} = \{Z_1, Z_2, \dots, Z_i, Z'_{i+1}, \dots, Z'_n\}$
 - $W_i = \mathcal{A}(S^{(i)})$
 - $\bullet P_i = \operatorname{law}(W_i, S_n)$
 - $\Delta_i = \operatorname{conv}(\{P_0, P_1, \dots, P_i\})$

Finishing up

- Three ingredients for showing $\langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_i \eta \overline{L}_{i-1} \rangle = 0$:
 - $\nabla \Phi(\eta \overline{L}_{i-1}) = \operatorname{argmax}_{P \in \Delta_n} \{\eta \langle P, \overline{L}_{i-1} \rangle H(P)\}$ (Danskin's theorem)
 - Maximizer is in Δ_{i-1} (by construction of *H* and $\{\Delta_i\}_i$):
 - $\langle P_{i-1}, \overline{L}_{i-1} \rangle = \langle P_i, \overline{L}_{i-1} \rangle = \cdots = \langle P_n, \overline{L}_{i-1} \rangle$ • $H(P_{i-1}) \le H(P_i) \le \cdots \le H(P_n)$
 - For all $\tilde{P} = \text{law}(\tilde{W}, S_n) \in \Delta_{i-1}$, we have $\langle \tilde{P}, \eta \overline{L}_i - \eta \overline{L}_{i-1} \rangle = \frac{\eta}{n} \mathbb{E}[\overline{\ell}(\tilde{W}, Z_i)] = 0$ (thanks to the independence of \tilde{W} and Z_i)

Finishing up

- Three ingredients for showing $\langle \nabla \Phi(\eta \overline{L}_{i-1}), \eta \overline{L}_i \eta \overline{L}_{i-1} \rangle = 0$:
 - $\nabla \Phi(\eta \overline{L}_{i-1}) = \operatorname{argmax}_{P \in \Delta_n} \{\eta \langle P, \overline{L}_{i-1} \rangle H(P)\}$ (Danskin's theorem)
 - Maximizer is in Δ_{i-1} (by construction of *H* and $\{\Delta_i\}_i$):
 - $\langle P_{i-1}, \overline{L}_{i-1} \rangle = \langle P_i, \overline{L}_{i-1} \rangle = \dots = \langle P_n, \overline{L}_{i-1} \rangle$ • $H(P_{i-1}) \le H(P_i) \le \dots \le H(P_n)$
 - For all $\tilde{P} = \text{law}(\tilde{W}, S_n) \in \Delta_{i-1}$, we have $\langle \tilde{P}, \eta \overline{L}_i - \eta \overline{L}_{i-1} \rangle = \frac{\eta}{n} \mathbb{E}[\overline{\ell}(\tilde{W}, Z_i)] = 0$

(thanks to the independence of \widetilde{W} and Z_i)

Strong convexity of \mathcal{D}_σ

Lemma

The function $h(Q) = \mathcal{D}_{\sigma}(Q|P_{W_n})$ is 1-strongly convex with respect to the smoothed total variation distance.

Proof steps:

- The Bregman divergence of h is $\mathcal{B}_h(Q|Q') = \mathcal{D}_\sigma(Q|Q')$
- Pinsker's inequality:

$$\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}(G_{\sigma}Q|G_{\sigma}Q') \ge \frac{1}{2} \|G_{\sigma}Q - G_{\sigma}Q'\|_{\mathrm{TV}}^{2} = \frac{1}{2} \|Q - Q'\|_{\sigma}^{2}$$

Boundedness of \mathcal{D}_{σ}

Lemma

The smoothed relative entropy is upper-bounded by the squared Wasserstein-2 distance: $\mathcal{D}_{\sigma}(Q|Q') \leq \frac{1}{2\sigma^2} \mathbb{W}_2^2(Q,Q')$

Proof steps:

• Let π be the coupling of Q and Q' that achieves the infimum in the def. of \mathbb{W}_2

$$\mathcal{D}_{\sigma}(Q|Q') = \mathcal{D}_{\mathrm{KL}}\left(\int_{\mathcal{W}} \mathcal{N}(w,\sigma^{2}I) \mathrm{d}\pi(w,w') \middle| \int_{\mathcal{W}} \mathcal{N}(w',\sigma^{2}I) \mathrm{d}\pi(w,w')\right) \\ \leq \int_{\mathcal{W}} \mathcal{D}_{\mathrm{KL}}(\mathcal{N}(w,\sigma^{2}I)|\mathcal{N}(w',\sigma^{2}I)) \mathrm{d}\pi(w,w') = \int_{\mathcal{W}} \frac{1}{2\sigma^{2}} ||w-w'||^{2} \mathrm{d}\pi(w,w')$$

Jensen's inequality + joint convexity of \mathcal{D}_{KL}