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Abstract
We consider a repeated newsvendor problem where the inventory manager has no prior

information about the demand, and can access only censored/sales data. In analogy to multi-
armed bandit problems, the manager needs to simultaneously “explore” and “exploit” with
her inventory decisions, in order to minimize the cumulative cost. We make no probabilistic
assumptions—importantly, independence or time stationarity—regarding the mechanism
that creates the demand sequence. Our goal is to shed light on the hardness of the prob-
lem, and to develop policies that perform well with respect to the regret criterion, that is, the
difference between the cumulative cost of a policy and that of the best fixed action/static in-
ventory decision in hindsight, uniformly over all feasible demand sequences. We show that
a simple randomized policy, termed the Exponentially Weighted Forecaster, combined with
a carefully designed cost estimator, achieves optimal scaling of the expected regret (up to
logarithmic factors) with respect to all three key primitives: the number of time periods, the
number of inventory decisions available, and the demand support. Through this result, we
derive an important insight: the benefit from “information stalking” as well as the cost of cen-
soring are both negligible in this dynamic learning problem, at least with respect to the regret
criterion. Furthermore, we modify the proposed policy in order to perform well in terms
of the tracking regret, that is, using as benchmark the best sequence of inventory decisions
that switches a limited number of times. Numerical experiments suggest that the proposed
approach outperforms existing ones (that are tailored to, or facilitated by, time stationarity)
on nonstationary demand models. Finally, we consider the “combinatorial” version of the
repeated newsvendor problem, that is, single-warehouse multi-retailer inventory manage-
ment of a perishable product. We extend the proposed approach so that, again, it achieves
near-optimal performance in terms of the regret.

Keywords: repeated newsvendor problem, demand learning, censored observations, regret
minimization, Exponentially Weighted Forecaster.

1 Introduction

We consider the multi-period inventory management problem of a perishable product, like

newspapers, fresh food, or certain pharmaceutical products, where no prior information is avail-

able about the demand for the product over the different periods. This may be the case when a
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new product is introduced to the market, or when the market conditions for an existing product

change drastically, e.g., due to a major competitor entering/exiting the market, due to a ma-

jor economic downturn etc. An additional complication comes from the fact that, often times,

the inventory manager cannot observe the actual demand for the product due to censoring : the

firm is unable to measure or estimate accurately lost sales, so the manager has access only to

sales data. However, the sales depend on the manager’s prior inventory decisions, making infer-

ences about the underlying demand much harder. In such scenarios, the inventory manager is

faced with a dynamic learning problem, having to simultaneously “explore” with her inventory

decisions in order to learn the underlying demand, as well as “exploit,” that is, focus mostly on

decisions that are likely to incur low cost. Due to its practical importance and intellectual chal-

lenge, the problem of inventory management with demand learning through censored data has

attracted significant attention from the academic community, leading to valuable insights as we

detail below.

Our main motivation, and point of departure from the existing literature, stems from the fact

that the demand for a product may very well be nonstationary: trends and seasonalities are very

common in a demand time series; competition in the market that a firm operates may change

over time, in terms of both the assortments and the prices offered; consumers may time their

decisions strategically. Our goal is to develop a framework that incorporates, in a tractable way,

the potentially nonstationary nature of the demand, to explore the fundamental limits of perfor-

mance in this setting and propose suitable inventory management policies, and to shed light on

the performance loss compared to the case where the demand is time-stationary. Accordingly,

we adopt a “nonstochastic” viewpoint: we formulate the problem of inventory management

under censored demand as a repeated game between the inventory manager and the market,

without making any probabilistic assumptions on the mechanism via which the market gener-

ates the demand. We evaluate the performance of different policies with respect to the regret

criterion, that is, the difference between the cumulative cost of a policy and the cumulative cost

of the best fixed action/inventory decision in hindsight, for a given demand sequence, and pro-

vide performance guarantees that hold uniformly over all demand sequences.

The above viewpoint is also referred to in the literature as the “adversarial” approach, al-

though this term is somewhat unfortunate: in our setting, the market chooses a sequence of

demands for the different time periods arbitrarily, as far as the inventory manager is concerned.

Importantly though, the market does not adapt its strategy according to the actions of the in-

ventory manager. Indeed, it seems far-fetched to assume that an entire market adapts, and acts

adversarially, to the inventory decisions of a firm. So, while our modeling framework can cap-

ture demand correlations and nonstationarities to a significant extent, it is certainly not a game-

theoretic model.

In the remainder of the introduction we provide a detailed account of the existing literature

on the repeated newsvendor problem with demand learning, we give some background on the
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nonstochastic approach to dynamic learning problems, and we highlight the main contributions

of the present paper.

1.1 Related Literature

Stochastic inventory theory is a field with a long history and rich literature. A detailed account

of this literature is beyond the scope of our paper, so we refer the interested reader to Porteus

(2002). It could be argued that one of the most influential contributions in this field is the de-

velopment and analysis of the newsvendor model, where a manager has to make an inventory

decision in anticipation of uncertain demand over a single selling period, aiming at minimiz-

ing the total expected overage and underage cost. Elementary arguments can show that the

optimal inventory decision is a critical quantile of the demand distribution. Equally important

is the mathematical model of multi-period inventory management of a nonperishable product

with uncertain demand, whose dynamic programming formulation gives rise to the optimality

of (s, S) inventory replenishment policies. To some extent both models are related to our work,

as we consider a multi-period inventory management problem of a perishable product, that is, a

repeated newsvendor problem. However, a common (and critical) assumption in both models,

and in “classical” stochastic inventory theory overall, is that even though the inventory manager

does not know the realization of future demand, she does have access to an accurate probabilis-

tic description of it, for example, via historical data. We do not make this assumption in our

work.

Throughout the years, there have been several attempts to relax the assumption that the cor-

rect distribution of future demand is available. The most followed approach is to assume that the

demand belongs to a particular family of probability distributions, but one or more parameters

are unknown. This parametric approach is usually cast in a Bayesian learning framework: a prior

on the parameters is also assumed, and the belief about the true parameter values is updated

with observed demand samples through Bayes rule. Early works in that direction include Scarf

(1959), Karlin (1960), and Iglehart (1964), which focus on exponential families of demand distri-

butions. Murray and Silver (1966) and Azoury (1985) consider variants of the problem and incor-

porate Bayesian learning into a dynamic programming framework, while Chang and Fyffe (1971)

uses the Kalman filtering approach to achieve efficient learning/forecasting. Finally, Lovejoy

(1990) shows the near-optimality of simple myopic inventory management policies, when com-

bined with adaptive tuning of the parameters via Bayes rule or exponential smoothing.

A common characteristic of the above works is that the inventory manager has access to the

realized demand, in order to update her beliefs. During stock-outs, however, it is often the case

that excess demand is lost, making it very hard to measure or estimate the realized demand.

In other words, on many occasions it may be more realistic to assume that the inventory man-

ager has access only to the sales, that is, censored demand data. The main insight here is that a
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dynamic analysis is required even in the case of a perishable product, and that the optimal in-

ventory decision is higher than that of a Bayesian myopic policy, a phenomenon that is referred

to in the literature as “information stalking.” The intuition behind it is that this additional in-

ventory gives, occasionally, some extra uncensored demand samples, which contribute towards

learning the true parameter values and are, thus, useful in the future. Consequently, some level

of “experimentation/exploration” is necessary when dealing with censored demand. This result

was first proved in Harpaz et al. (1982) in the context of a perfectly competitive firm making

output decisions in the presence of demand uncertainty, and later cast in an inventory manage-

ment setting and strengthened in Ding et al. (2002) and Lu et al. (2008).1 Lariviere and Porteus

(1999) derives a closed-form expression for the Bayesian optimal inventory level if the demand

belongs to the class of “newsvendor distributions” developed in Braden and Freimer (1991), and

confirms that it is optimal to enhance learning through stocking higher. Recently, Besbes et al.

(2015a), building on the framework of Lariviere and Porteus (1999), provides both analytical and

numerical evidence to the fact that, while there is cost in being myopic (instead of far-sighted,

in the Dynamic Programming sense), this cost is actually quite small. Hence, a Bayesian myopic

policy is near-optimal, apart from being easy to implement. Moreover, the cost of censoring, de-

spite being not too large either, is about an order of magnitude greater than the cost of myopia,

so the inventory manager should direct her efforts in measuring/estimating lost sales.

The picture becomes more complicated in the case of nonperishable products: the inventory

carried over from previous periods may force the inventory manager to stock higher or lower

compared to the Bayesian myopic benchmark; see Chen and Plambeck (2008), where the effect

of substitutable products is also studied. In a follow-up work, Chen (2010) develops improved

bounds and heuristics for the problem.

A fundamental limitation, and the standard criticism against the parametric approach, is

that if the parametric family adopted is not broad/flexible enough to capture the underlying

demand process, estimating the best parameter values is of little help in really learning the de-

mand, and then managing the inventory in a cost-effective way. Hence, in parallel to the afore-

mentioned parametric approach to stochastic inventory theory with uncertainty regarding the

demand distribution, a literature following a nonparametric approach has also been develop-

ing. The setting here is one where the inventory manager has no prior information on the de-

mand, other than the fact that it is mutually independent (and in some cases, also identically

distributed) over different time periods, and she has access to censored demand data. Burne-

tas and Smith (2000) and Kunnumkal and Topaloglu (2008) propose stochastic approximation

algorithms for ordering and pricing, and prove their asymptotic optimality, without providing

any rates of convergence though. Adaptive value-estimation methods that take advantage of

the convexity of the newsvendor cost function are presented in Godfrey and Powell (2001) and

Powell et al. (2004). Again, the convergence of these algorithms to the optimal solution is es-

1Interestingly, a similar insight has been derived in a dynamic pricing context in Braden and Oren (1994).
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tablished, but the rate of convergence is explored only numerically. Huh et al. (2011) proves

the asymptotic optimality of a myopic inventory control policy based on the Kaplan-Meier esti-

mator, and compares the performance that it achieves to previously proposed policies through

extensive computational experiments and for various classes of distributions. Finally, in the

related setting of a repeated stochastic capacity control problem, van Ryzin and McGill (2000)

proposes a stochastic approximation algorithm, whereas Maglaras and Eren (2015) introduces a

methodology based on maximum entropy distributions. Similarly to all the works in this thread,

the asymptotic convergence of these algorithms is established but the rates of convergence are

not addressed.

The papers that come closest to our work are Huh and Rusmevichientong (2009) and

Besbes and Muharremoglu (2013). Both consider the inventory management of a perishable

product, in other words, a repeated newsvendor problem over T time periods, and follow the

nonparametric approach: the manager has no prior information on the demand - assumed to

be independent and identically distributed over different time periods, drawn from an unknown

distribution - and has access only to censored demand data. The objective is to minimize the

expected regret, that is, the difference between the expected incurred cost and the optimal ex-

pected cost, had the demand distribution been known a priori. Huh and Rusmevichientong

(2009) proposes an adaptive inventory management algorithm based on the methodology of

online convex optimization (OCO); see Zinkevich (2003). This algorithm has expected regret

that scales as O
(√

T
)

, which is the minimax optimal scaling. This can be improved to O (log T )

if the demand has a continuous density, uniformly bounded away from zero. We note that the

stationarity of the underlying demand is not crucial for OCO,2 but the fact that demand and in-

ventory are continuous quantities is important: this is a gradient descent-type algorithm, and

the continuity of state and action spaces implies that a direction of cost improvement is avail-

able almost surely, irrespective of censoring. Consequently, in the case of discrete demand, their

methodology requires the existence of a lost-sales indicator to recover the O
(√

T
)

scaling of

the expected regret. As we illustrate in our numerical experiments, in the absence of such an

indicator, this approach cannot guarantee sublinear regret.

On the other hand, the objective in Besbes and Muharremoglu (2013) is to understand the

impact of the available information/feedback structure (fully observable/censored/partially cen-

sored demand) on the optimal scaling of the expected regret.3 In the case of discrete demand

and censored observations, which is most relevant to our work and often the case in practice, the

authors develop an algorithm based on alternating exploration and exploitation intervals whose

2In fact, Zinkevich (2003) does not make this assumption.
3Relatedly, following the parametric approach, Bensoussan and Guo (2015) and Jain et al. (2015) compare the

optimal inventory management policies under different information levels (observable lost sales/unobservable lost
sales but observable stock-out times/unobservable lost sales and stock-out times), and conclude that through addi-
tional information, improved performance can be achieved. In a different direction but still in a parametric setting,
Mersereau (2015) studies the impact of inventory record inaccuracy when combined with censored demand samples.
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expected regret scales asO (log T ), which is the minimax optimal scaling.4 Overall, the proposed

algorithm is well equipped to deal with the discreteness of the demand, and the issues it may

create when combined with censoring, but the stationarity of the underlying demand process

seems to be crucial here: the exploration intervals could lead to very poor inferences, and hence

performance during the subsequent exploitation intervals, if the demand is nonstationary.

Finally, in a related setting and with the same motivation as our work, is the recent contri-

bution Besbes et al. (2015b). The authors develop a modeling and algorithmic framework for

non-stationary stochastic optimization, an adaptation of the OCO setting where: (i) the actions

of the nature/adversary are constrained by a variational budget; (ii) the comparator sequence is

not static (i.e., a fixed action) but rather a dynamic oracle, a feature that bodes well with their

focus on non-stationary environments. One of the main insights of the paper is to show that

algorithms that perform well for OCO, can be successfully adapted for non-stationary stochas-

tic optimization. On the other hand, the theory is developed in a quite abstract setting, so it

does not take advantage of the special structure of the inventory management problem at hand.

Moreover, and quite importantly, extending their approach to settings with limited feedback,

such as censored data, is a challenging task, e.g., Besbes et al. (2014) explores the case of bandit

feedback. As discussed earlier in the approach of Huh and Rusmevichientong (2009), OCO-

based algorithms may not have guaranteed performance if a direction of cost improvement is

not always available, e.g., through a lost-sales indicator.

Our goal is to fill the conceptual gap that exists between these influential works, that is, to

devise an inventory management policy that learns from censored data without making any

parametric assumptions, and which has guaranteed performance under discrete and nonsta-

tionary5 demand; in fact, near-optimal performance in terms of the regret criterion. Both fea-

tures are quite important in practice, and as we elaborate below, jointly, they require a different

methodological approach than the ones existing in the literature on stochastic inventory theory.

Moreover, in existing works, action space (orders) and outcome space (demand) coincide. In

practice, however, there may be only few, predetermined ordering levels, for example, due to

fixed ordering cost. Accordingly, we disentangle the two, and provide more refined results that

highlight the scaling of the expected regret not only with respect to the number of time periods,

but also with respect to the number of ordering decisions available and the size of the demand

4The discrepancy between the results in Huh and Rusmevichientong (2009) and Besbes and Muharremoglu (2013)
in the case of discrete demand stems from the fact that the latter study makes somewhat stronger assumptions re-
garding the families of distributions allowed. In particular, it is assumed that the expected cost function is not “too
flat” around the optimal ordering quantity, that is, the separation between the optimal and the best suboptimal or-
dering quantity is bounded from below by some ε, and the upper bound on the expected regret of their algorithm
also scales as O

(
1/ε2

)
.

5It may be worthwhile to mention a thread in the literature that develops online approximation algorithms for
inventory management problems, which are based on marginal cost accounting and cost balancing, and have guar-
anteed worst-case performance; see Levi et al. (2007), Levi et al. (2008), and several follow-up works. While their
framework allows for correlated and nonstationary demand processes, which is a big part of our motivation, there
is no learning, and hence no censoring problem in their case: given a realization of past demand and possibly addi-
tional information, a conditional joint distribution of future demand is assumed to be available.
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support. We note that our approach has guaranteed performance not only with respect to the

standard notion of regret, which is based on the best fixed action, in hindsight, but also with

respect to the tracking regret, a much stronger benchmark. Furthermore, we discuss the pos-

sibility of extending our approach to even stronger benchmarks, such as the dynamic regret of

Besbes et al. (2015b).

1.2 A Nonstochastic Approach to Dynamic Learning Problems

To understand why, and how, our methodological approach deviates from previous literature on

stochastic inventory theory, let us put the repeated newsvendor problem with demand learn-

ing in a broader context, that of sequential prediction: a forecaster observes one after the other

the elements of a sequence of outcomes y1, y2, . . . Before the tth element of the sequence is re-

vealed, the forecaster predicts its value yt on the basis of the previous t − 1 observations. In

the “classical” statistical theory of sequential prediction, the sequence of outcomes is assumed

to be a realization of a stationary stochastic process. Under this hypothesis, statistical proper-

ties of that process may be estimated on the basis of the sequence of past observations, and

effective prediction rules/policies can be derived from these estimates.6 In such a setting, the

performance of a policy is captured through the expected value (with respect to the probability

distribution governing the process) of some loss function measuring the discrepancy between

predicted values and true outcomes.

On certain occasions though, an underlying probabilistic structure (in particular, time sta-

tionarity) may be hard to justify or estimate. Then, an alternative approach is to view the se-

quence y1, y2, . . . as the product of some unknown and unspecified mechanism. In lack of any

probabilistic assumptions on the sequence, the goal is to come up with prediction rules/policies

that perform reasonably well for every possible outcome sequence, that is, to predict individual

sequences uniformly well. The lack of probabilistic assumptions also raises the question of how

to quantify the forecaster’s performance. To provide a baseline for measuring performance in

this setting, one may introduce a class of reference forecasters or “experts.” These experts make

their predictions available to the forecaster before each outcome is revealed, and the forecaster

makes her own prediction based on the advice of the different experts. The goal of the forecaster

is to keep her cumulative loss close to that of the best expert in hindsight (i.e., with full knowl-

edge of the entire sequence of outcomes), or in other words to minimize her regret, uniformly

over all outcome sequences.

The literature on prediction of individual sequences originates from repeated games: sev-

eral of the basic ideas are introduced in the early influential works Blackwell (1956) and Hannan

(1957), such as the use of randomization as a powerful tool to achieve low regret when it would

6For instance, in the context of the repeated newsvendor model with time-stationary demand whose underlying
distribution is unknown, one would use past observations to estimate the critical quantile of the demand distribu-
tion, which is the optimal solution when that distribution is known.
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be impossible otherwise. In a different strand of literature, Cover (1965), Lempel and Ziv (1976),

and Ziv and Lempel (1977) give the information-theoretic foundations of sequential prediction

of individual sequences, motivated by the problems of data compression and “universal” coding.

More recently, the prediction of individual sequences has become a topic of intense research ac-

tivity in the subfield of machine learning termed online learning. The pioneering papers De San-

tis et al. (1988), Littlestone and Warmuth (1989), and Vovk (1990) illustrate how the framework of

prediction with expert advice can be transformed into a model of online learning, and a plethora

of subsequent works builds on and extends their results; for a comprehensive treatment of the

topic the reader is referred to Cesa-Bianchi and Lugosi (2006). Let us note that in this setting,

typically, each expert is associated with a different action (e.g., predicted outcome), so the regret

of the learner (e.g., the forecaster) is measured against the best fixed action in hindsight.

Of particular interest to us is the literature on partial monitoring, a special case of the online

learning paradigm where the information available to the learner is limited in some way. A no-

table member of this class is the (nonstochastic) multi-armed bandit problem studied in Auer

et al. (2002), where the actual outcome is not revealed to the learner after each round. What the

learner knows with certainty is the loss of the actions that she takes, but she has no information

on the losses of other actions she could have chosen instead. Hence, she has to “explore” in or-

der to learn the losses associated with different actions, and to “exploit” by converging sooner

rather than later to the ones she believes have the smallest loss. The main result is that a sim-

ple randomized policy, termed the Exponentially Weighted Forecaster (EWF), achieves expected

regret7 that scales as O
(√

T
)

, which is also the optimal scaling for the particular problem. Pic-

colboni and Schindelhauer (2001) extends this setting significantly, to a repeated game between

a learner and an opponent, making sequential decisions in a finite action and outcome space,

respectively, with the loss and the feedback that the learner receives at the end of each round be-

ing arbitrary (but time invariant) functions of the action and outcome chosen during that round.

The authors prove that under a relatively mild technical assumption, an adaptation of the EWF

achieves expected regret that scales as O
(
T 3/4

)
. Cesa-Bianchi et al. (2006) improves this bound

toO
(
T 2/3

)
, and also provides a lower bound of the same order for a specific feedback/loss struc-

ture. The question of the exact dependence of the minimax regret on the problem structure was

first tackled in Bartók et al. (2011); see also Antos et al. (2013) for the case of stochastic outcomes.

This series of research efforts culminated in Bartók et al. (2014), where a complete classification

of finite partial monitoring games is provided: “trivial” games where the expected regret does

not scale with T ; “easy” games where the scaling is Θ
(√

T
)

; “hard” games where the scaling is

Θ
(
T 2/3

)
; and “hopeless” games with scaling Θ (T ). Importantly, there can be no other scaling

apart from the aforementioned four, despite the fact that the structure of the game, in terms

7We note that when one refers to expected regret in the context of prediction of individual sequences, the expec-
tation is taken with respect to the randomization induced by the forecasting policy; in essence, with respect to the
beliefs of the forecaster. This is because in a nonstochastic setting there is no ground-truth or benchmark distribution
to compare against.
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of both the loss and the feedback functions, can be chosen arbitrarily. A geometric condition,

termed local observability, is shown to distinguish “easy” from “hard” games, and generic algo-

rithms are developed for each case, albeit significantly more complicated than the EWF.

It is worthwhile to mention the sole paper on the repeated newsvendor problem with de-

mand learning that adopts the nonstochastic framework, Levina et al. (2010). In their setting,

however, there is no censoring, while demand and orders are continuous quantities; both cru-

cial features as explained earlier.

1.3 Main Contributions

As already mentioned above, we focus on the multi-period inventory management problem of

a perishable product, that is, a repeated newsvendor problem, where no information on the de-

mand is available a priori, and learning occurs via sales/censored data. Importantly, demand

and orders are discrete quantities, and no probabilistic assumptions (in particular, indepen-

dence or time stationarity assumptions) are made regarding the demand. Our main contribu-

tions can be summarized as follows.

(1) We show that the simple EWF policy has expected regret that scales asO
(√
T log T

)
, which

is optimal up to the logarithmic term. Note that even in the case where the demand over

different time periods is i.i.d., no better scaling than Ω
(√

T
)

can be achieved, unless fur-

ther assumptions are made on the demand; see Section 2.5 in Huh and Rusmevichientong

(2009) and Section 2.3 in Besbes and Muharremoglu (2013).

(2) We disentangle the impact of the cardinality of the action space (orders) from that of the

outcome space (demand). In particular, we assume that there are N ordering points that

the inventory manager can choose from at every period, arbitrarily placed within the de-

mand support. We show that the expected regret of the EWF policy scales asO (logN), that

is, near-optimally. Notably, the general theory developed in Bartók (2013) and Bartók et al.

(2014) guarantees only polynomial scaling with respect toN . Crucial to the performance of

the EWF policy is a carefully designed cost estimator, which leverages the special structure

of the problem.

(3) The previous results allow us to reach an important conclusion about the dynamic learn-

ing problem at hand: the benefit from “information stalking” as well as the cost of cen-

soring are both negligible, at least with respect to the regret criterion. Intuitively speaking,

this seems to extend and solidify the insights in Besbes et al. (2015a), where in a time-

stationary setting and for the class of “newsvendor” distributions, the benefit from “infor-

mation stalking” has been shown to be very small, and the cost of censoring not significant

either.

9



(4) We modify the proposed policy so that it has guaranteed performance with respect to the

tracking regret, that is, using as benchmark the best sequence of inventory decisions that

switches a limited number of times. The tracking regret is a much stronger benchmark,

particularly suitable for nonstationary demand models as our numerical experiments sug-

gest. The tradeoff is a somewhat looser bound: while the scaling of the expected tracking

regret with respect to T and N remains optimal up to logarithmic terms, the upper bound

now includes a multiplicative term that relates to the number of times that the reference

sequence is allowed to switch actions.

(5) We consider the “combinatorial” version of the repeated newsvendor problem, that is,

single-warehouse multi-retailer inventory management of a perishable product, with facility-

dependent fixed ordering costs and overage/underage cost rates. We extend our approach

so that, again, it achieves expected regret that scales asO
(√
T log T

)
andO (logN), respec-

tively, that is, near-optimally in both cases.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. Section 2 provides a detailed description

of our benchmark model, a repeated newsvendor model with demand learning via censored

data, gives some necessary background on online learning, and presents the proposed inventory

management policy accompanied by a regret analysis. Section 3 introduces the notion of track-

ing regret, and shows that a modification of the proposed policy has guaranteed performance

with respect to the latter criterion. This is followed by extensive numerical experiments in Sec-

tion 4. Section 5 presents the “combinatorial” version of the repeated newsvendor problem, that

is, single-warehouse multi-retailer inventory management of a perishable product, again incor-

porating demand learning through censored observations from a nonparametric viewpoint. We

conclude the paper with a brief commentary in Section 6. All major proofs are relegated to an

appendix, at the end of the paper.

2 Inventory Management with Censored Demand Data

2.1 Problem Formulation

Fix T,D ∈ N, and define the sets T = {1, 2, . . . , T} and D = {0, 1, . . . , D}. Also, fix N ∈ N, with

N ≤ |D| = D + 1, and let I be an arbitrary subset of D with cardinality N . We denote by IE the

indicator variable of event E, and by (x)+ the maximum of scalar x and 0.

Consider a firm that sells a single perishable product to the market. The following “game”

between the firm’s inventory manager and the market is repeated over T time periods: at the
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beginning of period t ∈ T , the inventory manager chooses an inventory level It ∈ I to have in

stock. (So, implicitly, we assume that there is zero lead time between placing and receiving an

order.) Simultaneously, the market chooses the demand that the firm experiences during that

period, dt ∈ D, which is covered up to the extent that the available inventory allows. At the end

of the period any remaining inventory perishes, and the firm incurs a cost

c(It, dt) = h(It − dt)+ + b(dt − It)+, (1)

where h, b > 0 represent the overage and underage cost rates, respectively, which are known to

the manager and fixed for all time periods.

An important characteristic of our model is that the inventory manager has no information

about the demand prior to the beginning of the game. Moreover, she has to “learn” the demand

via censored data: at the end of period t, the inventory manager can only observe the sales during

that period, min {It, dt}. In particular, if the inventory It turns out to be less than or equal to the

demand, then the inventory manager does not know with certainty the exact demand that the

firm experienced, dt, nor the exact cost that it incurred, c(It, dt).

Fix a sequence of demand realizations {dt}. We define the regret of the inventory manager,

for any sequence of inventory decisions {It}, to be the difference between the cumulative cost

that is actually incurred and the cost that would have been incurred under the best fixed inven-

tory decision, in hindsight:

R(T ) =
∑
t∈T

c(It, dt)−min
i∈I

∑
t∈T

c(i, dt),

where c(i, dt) is defined similarly to Eq. (1). We denote by i∗ the minimizer in the equation above,

omitting its dependence on the sequence {dt} for convenience.

An important point of our work is that when no probabilistic assumptions are made about

the demand, that is, if one adopts the so-called nonstochastic viewpoint, then in many cases

randomization is the only way to achieve low regret. Of course, under a randomized inventory

management policy the regret is a random variable, so our goal is to design policies that have

low expected regret:

E[R(T )] = E

[∑
t∈T

∑
i∈I

pi(t)
(
c(i, dt)− c(i∗, dt)

)]
, (2)

where pi(t) denotes the probability of selecting inventory level i ∈ I at the beginning of time pe-

riod t ∈ T , conditional on all previous decisions made, that is, pi(t) = P(It = i | I1, I2, . . . , It−1).

2.2 Feedback Structure and Local Observability

Before we proceed to the presentation and performance analysis the proposed inventory man-

agement policy, we delve into the feedback structure of the problem and make a connection to
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the notion of local observability, as first defined by Bartók et al. (2011). Understanding and ex-

ploiting this structure is precisely what allows for good (near-optimal) scaling of the expected

regret with respect to T .

Consider an arbitrary pair of inventory decisions i, j ∈ I, and a demand realization d ∈ D. We

wish to compute the difference between the cost of the two actions. Without loss of generality,

assume that i > j. (If i = j then, obviously, the difference in cost is zero.) We have that:

(i) c(i, d)− c(j, d) = h(i− j), if d ≤ j;

(ii) c(i, d)− c(j, d) = h(i− d)− b(d− j) = hi+ bj − (h+ b)d, if j < d < i;

(iii) c(i, d)− c(j, d) = b(j − i), if d ≥ i.

On the other hand, let k ∈ N, with k ≤ D, and denote by Lk the k × k identity matrix, and

by Mk the k × (D − k) matrix, where M(i, j) = 1 if i = k, and 0 otherwise. Finally, let ed be the

D + 1-dimensional column vector, with ed(j) = 1 if j = d, and 0 otherwise.

The signal matrix of inventory decision i ∈ I, denoted by Si, is a (i + 1) × (D + 1) matrix,

where element Si(k, j) = 1 if the sales of the firm are equal to k ∈ {0, 1, . . . , i}, assuming that the

demand is equal to j ∈ D and the inventory is equal to i, and 0 otherwise. It can be verified that

Si is equal to the concatenated matrix:

Si =
[
Li+1 |Mi+1

]
.

The essence of local observability is that the difference in cost between any two inventory

decisions, for any demand realization, can be expressed in terms of their signal matrices, that is,

the information that the inventory manager receives in the respective cases via the firm’s sales.

Lemma 1. (Local Observability) Let i, j ∈ I be arbitrary inventory decisions. There exist vectors

vi ∈ Ri+1 and vj ∈ Rj+1 such that(
vTi Si − vTj Sj

)
ed = c(i, d)− c(j, d), d ∈ D.

Proof. Consider the (i+ 1)-dimensional column vector vi, where

vi(k) = hi− (h+ b)(k − 1), k ∈ {1, 2, . . . , i+ 1}.

Define similarly the vector vj . The result follows through straightforward calculations.

Lemma 1 implies that the game between the inventory manager and the market is locally ob-

servable, in the sense of Definition 6 in Bartók et al. (2014). This classifies the repeated newsven-

dor problem with demand learning via censored data as an “easy” partial monitoring problem -

see Section 1.2 - which implies that the correct scaling of the expected regret is Θ
(√

T
)

. Below,

we introduce a simple policy that is near-optimal with respect to this criterion.
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2.3 The Exponentially Weighted Forecaster

The Exponentially Weighted Forecasting (EWF) is a well-studied online learning methodology

that simultaneously “explores” and “exploits,” in a randomized way. The main idea behind it is

to keep track of not only the cost of actions that are actually taken, but also of the estimated cost

of all other actions that could have been taken instead. Of course, the specifics of cost estimation

are context-specific, as they are closely tied to the type of feedback that the learner receives.

Based on the cumulative estimated cost of the different actions, the learner forms beliefs about

the chances each of them has being the best one, in hindsight, and prioritizes future actions

accordingly.

More concretely, let c̃(i, dt) be the estimated cost that inventory decision i ∈ I would have

incurred at period t ∈ T under demand dt. Note that, implicitly, c̃(i, dt) may also be a function

of the actual inventory decision It that was made at period t. In fact, that is the case in the cost

estimator that we propose below. Similarly, we define C̃i(t) as the cumulative estimated cost of

(fixed) inventory decision i ∈ I at period t ∈ T , with C̃i(0) = 0. The cumulative estimated cost

can be computed through the recursion:

C̃i(t) = C̃i(t− 1) + c̃(i, dt), i ∈ I.

For convenience, let us also define Wi(t) = e−ηC̃i(t) and W (t) =
∑

i∈IWi(t), where η is a

positive constant whose exact value depends on the primitives of the problem in a way that is

specified later on. Using this notation, we have that

Wi(t) = Wi(t− 1)e−ηc̃(i,dt), i ∈ I. (3)

The EWF policy chooses inventory It = i with probability

pi(t) = (1− γ)
Wi(t− 1)

W (t− 1)
+
γ

N
, i ∈ I, (4)

where γ is another parameter, in the (0, 1) interval, whose precise value will be determined later.

Note that the EWF policy simultaneously “explores” the available action space by making

every inventory decision with probability at least γ/N , and “exploits” by assigning higher prob-

ability to decisions that have low cumulative estimated cost. The precise way that the inventory

manager prioritizes between exploration and exploitation depends on the exact values of the η

and γ parameters.

While the EWF is a generic and well-studied policy, what takes advantage of the special struc-

ture of the problem at hand is the design of the proper cost estimator c̃(i, dt). To get some insight

into what type of estimator may be suitable, let us assume that at period t ∈ T the inventory

manager decides to hold inventory It. At the end of period t, the firm gets (potentially censored)

feedback about the demand, that is, the sales min{It, dt}. Importantly, this feedback also gives

information about the sales that the firm would have had during the particular period, had the

inventory manager chosen any i ≤ It:
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(i) if the feedback was censored, that is, dt ≥ It, then min{i, dt} = i, for all i ≤ It;

(ii) if the feedback was not censored, that is, dt < It, then the demand dt is known with cer-

tainty and the sales min{i, dt} can be computed, for all i ∈ I.

We use this insight to define the estimated cost of action i under demand dt as follows:

c̃(i, dt) =
I{It≥i}

Pt(It ≥ i)
(
vTi Siedt + β

)
, i ∈ I, (5)

where vi and Si are taken from Lemma 1, β = D · max{h, b}, and Pt(It ≥ i) =
∑

j∈I:j≥i pj(t)

according to Eq. (4).

Next, we provide some properties regarding the bias and variance of the above estimator,

which are critical in the performance analysis that follows.

Lemma 2. (Bias and Variance of the Estimator) The cost estimator in Eq. (5) satisfies:

Et [c̃(i, dt)] = vTi Siedt + β,

so that Et [c̃(i, dt)] ∈ (0, 2β), and

Et
[
c̃(i, dt)

2
]
≤ 4β2

Pt(It ≥ i)
,

where Pt(·) and Et[·] respectively denote the probability and the expectation conditioned on the

history of interaction up until the beginning of round t.

Proof. The first part of the lemma follows directly by noting that

Et [c̃(i, dt)] =
Et
[
I{It≥i}

]
Pt(It ≥ i)

(
vTi Siedt + β

)
= vTi Siedt + β.

The fact that Et [c̃(i, dt)] ∈ (0, 2β) is a direct consequence of β being an upper bound on the

absolute value of vTi Siedt , for every i ∈ I and dt. Hence, regarding the second part of the lemma,

we have that

Et
[
c̃(i, dt)

2
]

=
Et
[
I{It≥i}

]
Pt(It ≥ i)2

(
vTi Siedt + β

)2 ≤ 4β2

Pt(It ≥ i)
.

Note that the proposed estimator is biased, as Et [c̃(i, dt)] 6= c(i, dt). In particular, the esti-

mator is pessimistic in the sense that it always overestimates the actual cost incurred. A direct

corollary of Lemmas 1 and 2 is the following result.

Lemma 3. The cost estimator in Eq. (5) is unbiased when inferring the difference in cost between

two actions:

Et [c̃(i, dt)− c̃(j, dt)] = c(i, dt)− c(j, dt), i, j ∈ I.

14



The significance of Lemma 3 lies in the fact that the regret, by definition, is a metric that is

based on cost differences. This facilitates the analysis in our main result, which characterizes the

performance of the proposed inventory management policy with respect to the regret criterion.

Theorem 1. Consider the repeated newsvendor problem described above. The expected regret of

the EWF policy with the cost estimator in Eq. (5) and parameters

γ =
1

2βT
, η =

√
logN

4β2T log (2βTN3 +N + 2)
,

is bounded from above as follows:

E[R(T )] ≤ 4β
√
T logN log (2βTN3 +N + 2) + 2β

√
T logN + 1.

Proof. See Appendix 1.

Theorem 1 implies that the expected regret of the EWF policy scales as O
(√
T log T

)
. On the

other hand, the expected regret of any policy in the particular setting scales as Ω
(√

T
)

, even if

the demand over different time periods is i.i.d.; see Section 2.5 in Huh and Rusmevichientong

(2009) and Section 2.3 in Besbes and Muharremoglu (2013).

Moreover, the expected regret of the EWF policy scales asO(logN). While the correct scaling

with respect to N is not known, the EWF policy cannot be further than a logarithmic factor off

the optimal. We note that the best known scaling of the expected regret for locally observable,

partial monitoring problems isO
(√

N
)

, achieved by the algorithm introduced in Bartók (2013),

a scaling that we improve considerably upon by taking advantage of the special structure of the

problem when designing the cost estimator.

Note that since β = D·max{h, b}, the expected regret of the EWF policy scales asO
(
D
√

logD
)

.

It can be easily verified that the expected regret of any policy scales as Ω(D) so, again, the per-

formance achieved by the EWF policy is near-optimal.

Finally, observe that the suggested choice of the parameters η and γ involves the total num-

ber of time periods T . Thus, in order to implement the suggested policy, the inventory manager

needs to know T–or at least an estimate of it–in advance. On the other hand, there are stan-

dard ways of getting rid of this assumption in the literature of online learning. In order to avoid

tedious but straightforward technicalities, we assume that the inventory manager knows T in

advance and refer the reader to Section 2.3 of Cesa-Bianchi and Lugosi (2006).

2.4 Benefit from “Information Stalking” and Cost of Censoring

“Information stalking,” that is, the additional exploration that an optimal policy performs in

a dynamic learning setting compared to reasonable myopic policies, can be measured in our
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scenario by the right-most term in Eq. (4), which captures the frequency of purely exploratory

decisions made by the EWF policy.8 Note that with the optimal selection of the γ parameter, this

term scales like 1/(TN). So, roughly speaking, across all periods and inventory decisions, the

proposed policy is expected to explore only a constant number on times, differing little in that

sense from a myopic policy. Moreover, the amount of exploration can be reduced arbitrarily: by

choosing γ = 1/T k, for any k > 1, the number of expected exploratory decisions is decreasing in

k, at the cost of a constant term (so, not affecting the scaling) in the upper bound on the expected

regret.

Let us also remark on the cost of censoring, that is, the additional cost incurred by having

censored observations instead of pure demand samples, as captured by the regret criterion. If

there is no censoring in the demand, then one can still use the EWF policy, simply replacing the

estimator in Eq. 5 with c(i, dt), the actual cost that would have been incurred if the manager had

held inventory i ∈ I at period t ∈ T . By following similar arguments to the proof of Theorem

1, it can be verified that the expected regret of the EWF policy in that case scales as O
(√

T
)

,

O
(√

logN
)

, and O (D), respectively, in terms of the three key primitives of our problem. We

note that this setting falls into the class of online learning problems with full information, and

matching lower bounds are known: for a cost function that is defined as the absolute value of

the difference between action and outcome, so essentially the newsvendor cost function in Eq.

(1), no policy can achieve scaling of the expected regret that is better than the scaling achieved

by the EWF policy, for all three key primitives of the problem; see Theorem 3.7 in Cesa-Bianchi

and Lugosi (2006). Comparing these to Theorem 1, we have that censoring does not cost more

than a root-log factor off the optimal scaling, for all three primitives. In that sense, the cost of

censoring is negligible with respect to the regret criterion.

3 Tracking Regret and the Fixed-Share Forecaster

In this section, we consider a stronger notion of regret that compares the total cost incurred by a

given policy to that of an arbitrary sequence of inventory decisions. Of course, establishing non-

trivial performance guarantees is only possible under some restrictions on either the sequence

of demands, or the reference sequence of decisions. Following the work of Herbster and War-

muth (1998), we consider reference sequences that switch between decisions at most S times.

Clearly, we cannot expect strong guarantees for values of S comparable to T , so we focus on the

case where S � T , which is also the more relevant in practice. Achieving low regret against such

comparators intuitively translates to good performance in nonstationary environments, where

8The other term on the right-hand side of Eq. (4) captures the beliefs of the forecaster about each fixed action
being the best one, in hindsight. So, the randomization that it induces is not equivalent to exploration. It is, rather,
due to the absence of an underlying probabilistic structure.
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the demand distribution may change abruptly several times, but otherwise remains roughly sta-

tionary for long periods of time.

More formally, let i[T ] = (i1, i2, . . . , iT ) ∈ IT be a sequence of inventory decisions, and let

C
(
i[T ]
)

=
∑
t∈T

I{it 6=it+1}

be the complexity of that sequence, that is, the number of times that i[T ] switches between two

actions. We denote the class of sequences of complexity at most S by

ITS =
(
i[T ] = (i1, i2, . . . , iT ) : C(i[T ]) ≤ S

)
.

Then, we can define the tracking regret against class ITS as

RS(T ) =
∑
t∈T

c(It, dt)− min
i[T ]∈ITS

∑
t∈T

c(it, dt).

We propose a simple variant of the EWF policy that aims to minimize the tracking regret. This

variant is based on the Fixed-Share Forecaster (FSF) introduced in Herbster and Warmuth (1998);

see also Auer et al. (2002), Bousquet and Warmuth (2002), and Cesa-Bianchi et al. (2012). The

key difference compared to the standard EWF is that instead of using Equation (3) for updating

the weights, the FSF policy uses the update rule:

Wi(t) = Wi(t− 1)e−ηc̃(i,dt) +
α

N

∑
j∈I

Wj(t− 1), (6)

for all i in I, where α > 0 is an suitably chosen constant. Otherwise, the probabilities pi(t) and

the cost estimates c̃(i, dt) are computed as described in the previous section. The following result

summarizes the performance guarantee that we can prove for the FSF policy.

Theorem 2. Consider the repeated newsvendor problem. The expected tracking regret of the FSF

policy with the cost estimator in Eq. (5) and parameters

α =
1

T
, γ =

1

2βT
, η =

√
log (NT )

4β2T log (2βTN3 +N + 2)
,

is bounded from above, for any S, as follows:

E[RS(T )] ≤ 2(S + 1)β
√
T log (NT ) log (2βTN3 +N + 2) + 2β

√
T logN + 2.

Furthermore, for fixed S, choosing parameters

α =
1

T
, γ =

1

2βT
, η =

√
S log (NT )

4β2T log (2βTN3 +N + 2)
,

leads to an improved bound:

E[RS(T )] ≤ 4β
√
ST logNT log (2βTN3 +N + 2) + 2β

√
T logN + 2.

Proof. See Appendix 1.
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4 Numerical Experiments

In this section, we perform a numerical study of the EWF and FSF policies, comparing them to

the most relevant existing methods in the literature. The goal of our experiments is to illustrate

the robustness of the proposed approach to nonstationary demand sequences, and thus to show

the benefits of designing policies that do away with time-stationarity assumptions. We particu-

larly focus on making comparisons to an inventory management policy based on Alternating Ex-

ploration and Exploitation phases (AEE), introduced in Besbes and Muharremoglu (2013), which

is designed for the same learning problem, albeit tailored to time-stationary demand settings.

Our numerical investigation suggests that this assumption is crucial for the AEE policy to per-

form well: although it has excellent performance in time-stationary settings, by construction, it

is unable to adapt to nonstationary demands, and consequently performs very poorly in the lat-

ter settings. The online gradient descent-based Adaptive Inventory Management policy (AIM),

introduced in Huh and Rusmevichientong (2009), is also closely related to our work. This policy

is shown to perform quite well in our numerical experiments. The caveat is that, unlike other

policies, it requires a lost-sales indicator to work properly in the case of discrete demand. As we

detail in Appendix 2, without such an indicator this policy has linear regret, and may perform

poorly even in settings where the demand is constant.

In our numerical experiments, we tune the parameters as follows. Regarding the policies

proposed in this paper, we set γ = 1/(2βT ) and α = 1/T , as suggested by Theorems 1 and 2, and

η =
√

S logN
4β2T

, withS = 1 for the EWF policy and some suitableS > 1 for the FSF policy. Regarding

the AEE policy, we use the parametrization provided in Section 5 of Besbes and Muharremoglu

(2013), without resorting to the data aggregation technique described in their Section 5.1. We

note that, in our setting, this choice actually works in favor of the AEE policy, as aggregating

estimates from early periods is clearly harmful when the demand sequence is nonstationary.

In each experiment, we choose T = 100, 000 and I = D = {1, 2, . . . , 30}. Each reported curve

is an average of 100 runs, with shaded areas representing the standard deviations.

Finally, to gain some insight into the cost of censoring in practice, we study both the uncen-

sored and the censored versions of each of the policies described above. Note that in the full

information case, the policy proposed in Besbes and Muharremoglu (2013) has no reason to ex-

plore. Rather, it exploits in a greedy fashion by ordering the empirical critical quantile. We term

the resulting policy “greedy-full.”

We start by reproducing the first numerical experiment in Section 5 of Besbes and Muhar-

remoglu (2013), where the sequence of demands is i.i.d., with each dt generated independently

from a binomial distribution representing 30 independent trials with a success probability of

1/2. The regret of each policy is plotted on Figure 1. In this setting, the AEE policy outperforms

the others by a wide margin. In particular, in both the censored and the uncensored cases, the

regret of the EWF policy is about 10 times greater than that of the AEE policy. This observation
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Figure 1: The regret of the different policies on a stationary demand series.

is not surprising: EWF is decidedly more conservative, since it aims to perform reasonably even

when the demand is nonstationary.9 Nevertheless, the empirical regret of the EWF policy grows

in a square-root fashion, in line with our theoretical guarantees.

Our second batch of numerical experiments considers a simple nonstationary demand se-

quence. As before, the demands are generated independently from a binomial distribution with

30 trials, albeit with a time-dependent success probability qt. Similarly to the previous experi-

ment, we set qt = 1/2 for most values of t, however, this probability drops to 0.1 for t ∈ [T/5, T/2].

The performance of each policy is shown on Figure 2; for clarity, we show the cumulative cost

incurred by each policy instead of their respective regrets.

The first lesson from this experiment is that the AEE policy fails to cope with the shifting

demand distribution, incurring a linearly increasing regret. The intuition behind this is simple:

since the policy, effectively, collects data in deterministically (and scarcely) scheduled explo-

ration periods, it is easily thrown off its tracks by a shifting demand distribution. In the partic-

ular experiment, the AEE policy bases all its decisions during the interval [T/2, T ] on data that

has nothing to do with the actual demand distribution. The policy has no mechanism to recover

from such mistakes, and introducing such a mechanism while maintaining strong performance

guarantees, is far from trivial.

In contrast, the EWF policy is robust to this nonstationary behavior. Notably, its cumulative

cost in the censored case, using our carefully designed cost estimator, is remarkably close to that

in the full-feedback case. This confirms our main insight, that censoring has minimal impact

9The inferior performance of general no-regret algorithms, like the EWF, in time-stationary environments has
been widely acknowledged in the online learning literature, with some remedies offered by the works of Van Erven
et al. (2014); Sani et al. (2014).
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Figure 2: The regret of the different policies on a nonstationary demand series.

on the performance of well-designed learning policies in this setting. We also highlight the ex-

cellent performance of the FSF policy: ran with S = 3, that is, correctly anticipating 3 shifts in

the comparator sequence, this policy is seen to react much quicker to the distributional shifts

compared to the standard EWF variant, thus achieving superior performance.

As a concluding remark, let us note that the performance of the AIM policy is quite good in

both experiments; in fact, superior to that of the EWF/FSF policies. This suggests that on some

occasions, it may constitute a viable option. The main disadvantage is that in the absence of

performance guarantees (i.e., when a lost-sales indicator is not available), it is hard to know in

advance how well will this policy perform. We refer the reader to Appendix 2 for further discus-

sion. It is reasonable, of course, to conjecture that as the demand becomes more fine-grained,

the value of the lost-sales indicator decreases and, thus, the AIM policy performs better; see

also Section 5.2 in Besbes and Muharremoglu (2013). However, apart from few numerical ex-

periments, little else is known in terms of quantifying the rate at which the discrete setting “con-

verges” to a continuous one, and the corresponding effect on the performance of online gradient

descent-based policies. This simply reiterates the point about the lack of performance guaran-

tees.

5 The Single-Warehouse Multi-Retailer Problem

In this section we extend our benchmark model to include the inventory management problem

of a perishable product, for a vertically integrated supply chain with a single warehouse and K

retailers. Again, the demand in each of the K retailers needs to be learned from censored/sales
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data, and a nonstochastic view of the problem is adopted. As this setting has many commonali-

ties with the model of Section 2, for brevity, we only present the points at which they differ.

Let us denote by K the set of retailers {1, 2, . . . ,K}. At the beginning of period t ∈ T , the

inventory manager allocates I(k)t ∈ I units of inventory from the warehouse to retailer k ∈ K. If

I
(k)
t is not zero, then the retailer incurs a fixed ordering cost of f (k). We assume zero lead times, so

the inventory is delivered to the retailer instantaneously. The retailer experiences demand d(k)t ∈
D during the particular period. At the end of the period, and depending on the initial inventory

and the demand, the retailer incurs overage or underage cost at rates h(k) and b(k), respectively,

and any remaining inventory perishes. Thus, at the end of time period t ∈ T , retailer k ∈ K
incurs a total cost of

ck

(
I
(k)
t , d

(k)
t

)
= f (k)I{

I
(k)
t >0

} + h(k)
(
I
(k)
t − d

(k)
t

)+
+ b(k)

(
d
(k)
t − I

(k)
t

)+
.

We assume that the supply chain operates in a “push” manner, from upstream to down-

stream. More specifically, the upstream supplier replenishes the inventory of the warehouse

with r > 0 units at the beginning of every time period. The inventory manager allocates differ-

ent parts of this inventory to the different retailers, but may also have an incentive to keep a part

of it at the warehouse, if she believes that the total demand at the retailer level is low. (The over-

age cost rate usually increases as one moves downstream.) Hence, the cost that the warehouse

incurs over time period t is equal to

c0

(
I
(1)
t , . . . , I

(K)
t , r

)
= f (0) + h(0)

(
r −

∑
k∈K

I
(k)
t

)+

.

The allocation that the inventory manager can make must belong to the set

Ar =

{(
i(1), . . . , i(K)

)
∈ IK :

∑
k∈K

i(k) ≤ r

}
.

The goal of the inventory manager is to minimize the total cost incurred by the warehouse

and the retailers throughout the T periods. More concretely, the demand sequences
{
d
(k)
t

}
, k ∈

K, and the inventory replenishment level r are exogenously determined by the market and the

upstream supplier, respectively, and the manager wishes to minimize her expected regret, E[Rc(T )],

over the best fixed (K-dimensional) inventory decision, in hindsight.

We refer to this setting as the “combinatorial” version of the repeated newsvendor problem,

due to the fact that the manager’s inventory decisions have a combinatorial nature, taking values

in Ar. To the best of our knowledge, this setting has not been studied before from the angle of

demand learning via censored data, and from a nonstochastic viewpoint. It may be worthwhile

to mention, however, some high-level similarity to Shi et al. (2016), where the results in Huh

and Rusmevichientong (2009) are extended to the capacitated multi-product case. The model

analyzed in Shi et al. (2016) is also a repeated newsvendor model with a combinatorial action
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space, but the approach is quite different: in order to obtain results for the (arguably harder)

case of nonperishable products, strong probabilistic assumptions are made about the demand

for the different products.

For convenience, let us define the quantities

β = D ·max

{
max

k=0,...,K

{
h(k)

}
,max
k∈K

{
b(k)
}}

,

and

f = max
k=0,...,K

{
f (k)

}
.

In what follows, we mimic the approach of Section 2, to construct an inventory management

policy that performs well with respect to the regret criterion. At a high level, the proposed policy

follows the EWF scheme, but unlike the versions discussed in previous sections, it draws actions

in a non-uniform way during the exploration rounds.

Specifically, in each round the policy explores with probability γ. The exploration procedure

generates a random allocation by selecting a retailer index κ uniformly at random from K, and

by choosing the order level I(κ) uniformly at random from I. The rest of the allocations can be

completed arbitrarily; for simplicity, we choose an order level of 0 for the remaining retailer. The

probability of choosing the allocation
(
i(1), . . . , i(K)

)
is denoted by µ(i(1),...,i(K)).

Now let us describe the main component of the policy, which is computing the weights of the

assignments. Let c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)
be the estimated cost that inventory decision(

i(1), . . . , i(K)
)

would have incurred at period t ∈ T . We compute, recursively, the quantities

W(i(1),...,i(K))(t) = W(i(1),...,i(K))(t− 1)e
−ηc̃

(
i(1),...,i(K),r,d

(1)
t ,...,d

(K)
t

)
,

where
(
i(1), . . . , i(K)

)
∈ Ar, with W(i(1),...,i(K))(0) = 1. We also use the shorthand notation

W (t) =
∑

(i(1),...,i(K))∈Ar

W(i(1),...,i(K))(t).

In this setting, the EWF policy chooses inventory
(
I
(1)
t , . . . , I

(K)
t

)
=
(
i(1), . . . , i(K)

)
∈ Ar with

probability

p(i(1),...,i(K))(t) = (1− γ)
W(i(1),...,i(K))(t− 1)

W (t− 1)
+ γµ(i(1),...,i(K)).

Similarly to Section 2, the proper values for parameters η and γ are specified during the analysis

stage.

The special structure of the problem is exploited by designing a suitable cost estimator. For

every
(
i(1), . . . , i(K)

)
∈ Ar, let

c̃k

(
i(k), d

(k)
t

)
=

I{
I
(k)
t ≥i(k)

}
Pt
(
I
(k)
t ≥ i(k)

) (vTi Sied(k)t
+ f (k)I{i(k)>0} + β

)
,
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where vi and Si are the same as in Lemma 1, and

Pt
(
I
(k)
t ≥ i(k)

)
=

∑
(j(1),...,j(K))∈Ar:j(k)≥i(k)

p(j(1),...,j(K))(t).

Through this, we define the estimated cost of inventory decision
(
i(1), . . . , i(K)

)
∈ Ar as

c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)
= c0

(
i(1), . . . , i(K), r

)
+
∑
k∈K

c̃k

(
i(k), d

(k)
t

)
. (7)

Note that the proposed estimator is designed in order to be unbiased in terms of inferring

the difference in expected cost between two decisions:

Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)
− c̃

(
j(1), . . . , j(K), r, d

(1)
t , . . . , d

(K)
t

)]
(8)

= c
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)
− c

(
j(1), . . . , j(K), r, d

(1)
t , . . . , d

(K)
t

)
,

for every
(
i(1), . . . , i(K)

)
,
(
j(1), . . . , j(K)

)
∈ Ar; a consequence of the local observability property

of the feedback structure in the single-retailer setting. Furthermore, it is easy to show that the

mean of the estimator satisfies

0 ≤ Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)]
≤ f +K(2β + f). (9)

The following lemma provides a bound on the second moment:

Lemma 4. The second moment of the estimator defined in Equation (7) satisfies∑
(i(1),...,i(K))∈Ar

p(i(1),...,i(K))(t)Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)2]

≤ 16K2β2 log

(
KN3

γ
+N + 2

)
+ 16K2β2 + 2(f +Kβ)2.

Proof. See Appendix 1.

The following theorem establishes a performance guarantee of the proposed allocation pol-

icy.

Theorem 3. Consider the “combinatorial” version of the repeated newsvendor problem described

above. The expected regret of the EWF policy with the cost estimator in Eq. (7) and parameters

γ =
1

T
, η =

√
logN

β2KT log (TNK +N + 2)
,

is bounded from above as

E[R(T )] = O
(
K3/2β

√
T logN log (TNK)

)
.
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Proof. See Appendix 1.

As in the single-warehouse setting, the scaling of the expected regret of the EWF policy is

near-optimal with respect to both T and N , similarly to the single-retailer setting in Section 2.

Again, we highlight the fact that the logarithmic scaling with respect to N is made possible by

our carefully designed estimator that assigns non-zero entries to all inventory levels below the

realized inventory decision. On the other hand, theO
(
K3/2

)
scaling with respect to the number

of retailers is unlikely to be optimal. To see this, we note that the combinatorial version of the

repeated newsvendor problem falls into the broader class of online combinatorial optimization,

for which the limitations of the EWF policy are now clearly understood. In particular, Audib-

ert et al. (2014) shows that the EWF policy has, in general, suboptimal performance guarantees

in terms of the size of the decision set, essentially translating to a suboptimal scaling with re-

spect to K in our case. We conjecture that the optimal scaling with respect to K is linear, and

it can be achieved by a suitable adaptation of the Component Hedge algorithm in Koolen et al.

(2010) (also called Online Stochastic Mirror Descent in Audibert et al. (2014)). We omit a de-

tailed treatment of that direction in order to maintain the clarity of our presentation. We also

remark that a similar combination of feedback graphs and combinatorial decision sets is stud-

ied in Kocák et al. (2014). An adaptation of their algorithm, termed FPL-IX, combined with our

cost estimates, can be shown to satisfy a regret bound identical to our Theorem 3. Details are

again omitted for brevity.

Note that from a mathematical standpoint, the role of the cost that the warehouse incurs

at every time period is to couple the inventory management problems of the different retailers.

However, the exact functional form of c0
(
I
(1)
t , . . . , I

(K)
t

)
is never used. Thus, the approach pre-

sented above extends in a straightforward way to the case where the supply chain operates in a

“pull” manner, from downstream to upstream. In that case, the inventory manager has no in-

centive to keep any inventory at the warehouse, since the product is perishable. The only cost

that the warehouse incurs is a fixed ordering cost of f (0) for procuring the required inventory

from upstream:

c0

(
I
(1)
t , . . . , I

(K)
t

)
= f (0)I{∑

k∈K I
(k)
t >0

}.
With this minor modification, the rest of the analysis follows verbatim.

6 Concluding Remarks

We conclude the paper by drawing connections between our setting and two related problems

which have attracted the attention of academic research recently, and discussing some direc-

tions for future research.
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6.1 Two Related Problems

The first problem is bidding in repeated second-price auctions with valuation learning: a bidder

participates in second-price auctions for different products, with her valuations of these prod-

ucts being unknown a priori. The bidder learns her true valuation of a given product only if she

wins the respective auction, that is, if she submits the highest bid, and her reward in that case is

equal to the difference between that valuation and the second highest bid; otherwise, the bidder

learns nothing about her valuation and earns no reward. The goal of the bidder is to maximize

her expected reward, which translates naturally into an exploration-exploitation tradeoff in her

bidding strategy. Weed et al. (2016) studies this problem from a nonstochastic viewpoint, and

proposes a bidding policy whose expected regret scales optimally with respect to the number

of auctions. There is an intriguing similarity to our problem, in that the learner receives feed-

back only when her action is greater than the opponent’s, in which case the problem reduces

to a full-information one. The cost structure, however, is quite different: in a newsvendor set-

ting the amount of cost incurred depends on the inventory decision of the manager, whereas

in a second-price auction the size of the reward is independent of the bid, conditional on win-

ning/not winning the auction. The authors take advantage of this property by introducing a

variation of the EWF policy that is based on interval splitting. Their approach does not seem

applicable to our setting, and our cost estimator is, not surprisingly, quite different.

The second problem is sequential stock allocation to dark pools: a trader receives amounts of

stocks to liquidate at different periods, and allocates these amounts among different dark pools,

whose demand for the particular stocks is unknown a priori. The trader learns the demand

at a certain dark pool only if the amount of stocks allocated there exceeds it. This problem is

formulated as a dynamic learning problem with limited feedback in Ganchev et al. (2010), and

analyzed from a nonstochastic viewpoint with regret guarantees in Agarwal et al. (2010). It is not

hard to see that this is almost identical to the “combinatorial” newsvendor problem in Section

5, with the main difference being that the amount of inventory that the warehouse receives is

constant, whereas the amount of stocks that the trader tries to liquidate may vary. (Relatedly,

the notion of regret that the authors adopt is somewhat different than ours.) Hence, one can

argue that we analyze a special case of the problem in Agarwal et al. (2010). On the other hand,

the expected regret of the policy proposed in the latter paper, for the case of integral allocations,

scales asO
(
T 2/3

)
, a result which we improve considerably upon by taking advantage of the local

observability property.

6.2 Open Questions

A limitation of our results, as well as of most results on partial monitoring problems, is that they

only hold in expectation, and assuming “oblivious” adversaries. While the latter restriction can

be easily relaxed by standard techniques (see the discussion in Arora et al., 2012), extending the
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results to hold with high probability seems like a significant challenge. Indeed, all known algo-

rithms that have such guarantees, such as the Exp3.P policy of Auer et al. (2002) or the Exp3-IX

policy of Neu (2015), use optimistically biased estimates of the costs, whereas our proofs cru-

cially rely on using unbiased estimators of cost differences for arbitrary pairs of actions. It is

unclear how one can construct estimators that would provide a suitable optimistic bias, simul-

taneously for all pairs of actions.

Regarding the single-warehouse multi-retailer variant of our setting, we note that the policy

proposed in Section 5 is not computationally efficient in its current form. However, it is already

unclear how to compute an optimal solution in an efficient way even in the offline variant of

this problem (i.e., computing an optimal allocation in perfect knowledge of the demands). If

such an efficient way exists, a natural extension of the FPL-IX policy in Kocák et al. (2014) would

also admit a computationally efficient implementation, thus settling this question. On the other

hand, if the offline problem turns out to be hard, it is unreasonable to expect that there is an

efficient algorithm for the online variant that we consider. We leave the study of this offline

optimization problem as future work.

In Section 3, we provide an extension to the EWF that guarantees bounds on the tracking

regret. While this performance measure is already much more expressive than regret against the

best fixed action, we note that there are several, even stronger baselines that can be considered.

Two particular performance notions are the strongly adaptive regret, which compares the per-

formance of the learner to the best action within every subinterval of [1, T ], see Zinkevich (2003);

Hazan and Seshadhri (2009); Daniely et al. (2015); Adamskiy et al. (2016); and the dynamic re-

gret, which uses the best sequence of actions as a comparator, see Hall and Willett (2013); Besbes

et al. (2014, 2015b); Jadbabaie et al. (2015); Karnin and Anava (2016). The FSF scheme, proposed

in Section 3, can be already shown to guarantee non-trivial bounds on its adaptive regret, as re-

vealed by an inspection of the proof of Theorem 2, yet it is unclear whether non-trivial bounds

can be achieved on the strongly adaptive regret or the dynamic regret in our setting. Regarding

the dynamic regret, we find it likely that the techniques of Besbes et al. (2015b) can be adapted

to our setting to achieve meaningful bounds, although one may need additional tools from Bes-

bes et al. (2014) and Karnin and Anava (2016) to deal with partial feedback. The case of strong

adaptivity seems to be significantly more complicated: as shown by Daniely et al. (2015), it is

impossible to achieve non-trivial strongly adaptive regret guarantees in the multi-armed ban-

dit setting. Since, feedback-wise, our setting is situated between the multi-armed bandit and

full information, this negative result does not rule out the possibility to devise strongly adaptive

algorithms. We leave this investigation, again, for future work.
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Appendix 1: Proofs of Main Results

Proof of Theorem 1

Our analysis largely follows the steps of the proof of Theorem 3.1 by Auer et al. (2002), combined

with our Lemmas 2 and 3. We analyze a slightly more general version of the EWF algorithm that

uses an arbitrary exploration distribution µ, with µi being the probability of taking action i in
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exploration rounds. More precisely, we consider a version of EWF that computes its probability

distributions over the actions as

pi(t) = (1− γ)
Wi(t− 1)

W (t− 1)
+ γµi, i ∈ I.

The statement will follow from setting µi = 1/N for all actions i.

The key idea of the analysis is studying the term log
(
W (T )/W (0)

)
which, as we show shortly,

relates closely to the regret. We start by constructing a lower bound:

log

(
W (T )

W (0)

)
= log

(
W (T )

)
− log

(
W (0)

)
= log

(∑
i∈I

Wi(T )

)
− log

(∑
i∈I

Wi(0)

)

= log

(∑
i∈I

e−ηC̃i(T )

)
− logN

≥ log
(
e−ηC̃i∗ (T )

)
− logN

= −η
∑
t∈T

c̃(i∗, dt)− logN, (10)

where i∗ is the best fixed action in hindsight, for the particular demand sequence.

Then, we derive an upper bound on log
(
W (T )/W (0)

)
:

log

(
W (T )

W (0)

)
= log

(∏
t∈T

W (t)

W (t− 1)

)

=
∑
t∈T

log

(
W (t)

W (t− 1)

)

=
∑
t∈T

log

(∑
i∈I

Wi(t)

W (t− 1)

)

=
∑
t∈T

log

(∑
i∈I

Wi(t− 1)

W (t− 1)
e−ηc̃(i,dt)

)
(by Eq. (3)).

Note that e−x ≤ 1−x+x2/2, for all x ≥ 0, and our estimators for the cost of the different decisions

are nonnegative. Thus,

log

(
W (T )

W (0)

)
≤
∑
t∈T

log

(∑
i∈I

Wi(t− 1)

W (t− 1)

(
1− ηc̃(i, dt) +

η2

2
c̃(i, dt)

2

))

=
∑
t∈T

log

(
1− η

∑
i∈I

Wi(t− 1)

W (t− 1)
c̃(i, dt) +

η2

2

∑
i∈I

Wi(t− 1)

W (t− 1)
c̃(i, dt)

2

)
.

Moreover, log(1 + x) ≤ x, for all x > −1. Since this is the case with the right-hand side of the

expression above (being an upper bound to a sum of exponential terms), we have, using Eq. (4),
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that

log

(
W (T )

W (0)

)
≤
∑
t∈T

(
−η
∑
i∈I

Wi(t− 1)

W (t− 1)
c̃(i, dt) +

η2

2

∑
i∈I

Wi(t− 1)

W (t− 1)
c̃(i, dt)

2

)

=
∑
t∈T

(
−η
∑
i∈I

pi(t)− γµi
1− γ

c̃(i, dt) +
η2

2

∑
i∈I

pi(t)− γµi
1− γ

c̃(i, dt)
2

)
. (11)

Eqs. (10) and (11) imply that

η

1− γ
∑
t∈T

∑
i∈I

pi(t)c̃(i, dt)−η
∑
t∈T

c̃(i∗, dt) ≤ logN+
ηγ

1− γ
∑
t∈T

∑
i∈I

µic̃(i, dt)+
η2

2(1− γ)

∑
t∈T

∑
i∈I

pi(t)c̃(i, dt)
2.

Since c̃(i∗, dt) ≥ 0, for all t ∈ T , we have that∑
t∈T

∑
i∈I

pi(t)c̃(i, dt)−
∑
t∈T

c̃(i∗, dt) ≤
logN

η
+ γ

∑
t∈T

∑
i∈I

µic̃(i, dt) +
η

2

∑
t∈T

∑
i∈I

pi(t)c̃(i, dt)
2.

This further implies that

E

[∑
t∈T

∑
i∈I

pi(t)
(
c̃(i, dt)− c̃(i∗, dt)

)]
≤ logN

η
+ γE

[∑
t∈T

∑
i∈I

µic̃(i, dt)

]
+
η

2
E

[∑
t∈T

∑
i∈I

pi(t)c̃(i, dt)
2

]
.

The tower rule of expectations along with Eq. (2) and Lemma 3 imply that

E

[∑
t∈T

∑
i∈I

pi(t)
(
c̃(i, dt)− c̃(i∗, dt)

)]
= E

[∑
t∈T

∑
i∈I

pi(t)Et
[
c̃(i, dt)− c̃(i∗, dt)

]]

= E

[∑
t∈T

∑
i∈I

pi(t)
(
c(i, dt)− c(i∗, dt)

)]
= E[R(T )].

Combined with Lemma 2, and the fact that µi = 1/N , we get:

E[R(T )] ≤ logN

η
+
γ

N

∑
t∈T

∑
i∈I

2β +
η

2

∑
t∈T

∑
i∈I

pi(t)
4β2

Pt(It ≥ i)

=
logN

η
+ 2βγT + 2β2η

∑
t∈T

∑
i∈I

pi(t)

Pt(It ≥ i)
.

The final step in the proof is to bound the term
∑

i∈I pi(t)
/
Pt(It ≥ i). We have that

∑
i∈I

pi(t)

Pt(It ≥ i)
=
∑
i∈I

pi(t)

pi(t) +
∑

j∈I:j>i pj(t)
≤ 2 log

(
N3

γ
+N + 2

)
+ 2.

This follows directly from Lemma 16 in Alon et al. (2014) with the following correspondences:

the number of nodes in the “feedback graph” is equal to N in our setting; the independence

number of the feedback graph is equal to 1 in our setting; a lower bound on the probabilities of

choosing the different actions is γ/N in our setting; and a dominating set of the feedback graph

in our case is the single-element set that contains the largest element of I.
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Consequently,

E[R(T )] ≤ logN

η
+ 2βγT + 4β2ηT log

(
N3

γ
+N + 2

)
+ 4β2ηT.

By choosing

η =

√√√√ logN

4β2T log
(
N3

γ +N + 2
) ,

we have that

E[R(T )] ≤ 4β

√
T logN log

(
N3

γ
+N + 2

)
+ 2β

√
T logN + 2βγT.

Finally, by setting γ = 1/2βT , we get:

E[R(T )] ≤ 4β
√
T logN log (2βTN3 +N + 2) + 2β

√
T logN + 1.

Proof of Theorem 2

We follow the steps of the proof of Theorem 8.1 in Auer et al. (2002). To this end, fix a comparator

sequence i[T ] ∈ ITS , and partition the interval [1, T ] into a number of subintervals I1 = [1, T1],

I2 = [T1 + 1, T2], . . . , IC = [TC−1 + 1, T ], such that it remains constant within each interval.

Since i[T ] ∈ ITS , we have that C ≤ S. In the remainder of the proof, we bound the regret within

each interval, and then combine the obtained bounds to prove a guarantee about the (global)

tracking regret.

Fix an arbitrary interval Is, s ∈ {1, . . . , C}, and let js be the action taken during that interval

(i.e., it = js, for all t ∈ Is). Also, let τs = Ts−Ts−1 be the length of Is. As in the proof of Theorem 1,

we study the term log
(
W (Ts)/W (Ts−1)

)
. First, note that

Wjs(Ts) ≥Wjs(Ts−1 + 1) exp

−η Ts∑
t=Ts−1+2

c̃(js, dt)


≥ α

N
W (Ts−1) exp

−η Ts∑
t=Ts−1+2

c̃(js, dt)


≥ α

N
W (Ts−1) exp

−η Ts∑
t=Ts−1+1

c̃(js, dt)

 ,

where the first and second inequalities follow from the (recursive) definition of the sequence

of weights Wj(t), and the last one is a consequence of the non-negativity of the loss estimates

c̃(i, dt). Hence,

log

(
W (Ts)

W (Ts−1)

)
≥ log

(
Wjs(Ts)

W (Ts−1)

)
≥ log

( α
N

)
− η

Ts∑
t=Ts−1+1

c̃(js, dt).
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On the other hand, we have that

W (t+ 1)

W (t)
=
∑
i∈I

Wi(t)e
−ηc̃(i,dt) + α

NW (t)

W (t)
=
∑
i∈I

Wi(t)e
−ηc̃(i,dt)

W (t)
+ α,

so by a similar line of reasoning as in the proof of Theorem 1, it can be verified that

log
W (Ts)

W (Ts−1)
≤

Ts∑
t=Ts−1+1

(
−η
∑
i∈I

pi(t)− γ/N
1− γ

c̃(i, dt) +
η2

2

∑
i∈I

pi(t)− γ/N
1− γ

c̃(i, dt)
2 + α

)
.

Combining the two bounds together, taking expectations, and appealing to Lemma 2, we

obtain:

E

 Ts∑
t=Ts−1+1

∑
i∈I

pi(t)
(
c̃(i, dt)− c̃(js, dt)

) ≤ log
(
N
α

)
η

+2βγτs+2β2ηE

 Ts∑
t=Ts−1+1

∑
i∈I

pi(t)

Pt(It ≥ i)

+ατs.

(12)

As in the proof of Theorem 1, the third term on the right-hand side can be bounded from above

as ∑
i∈I

pi(t)

Pt(It ≥ i)
≤ 2 log

(
N3

γ
+N + 2

)
+ 2.

Using this bound, we can add over all intervals s ∈ {1, . . . , C} both sides of Eq. (12), and use

Lemma 3 to obtain:

E

[
T∑
t=1

(
c(It, dt)− c(it, dt)

)]
≤
S log

(
N
α

)
η

+ 2βγT + 4β2ηT log

(
N3

γ
+N + 2

)
+ αT.

The statement of the theorem follows from taking the supremum over all i[T ] ∈ ITS 10, and substi-

tuting for the chosen values of γ, η, and α.

Proof of Lemma 4

For simplicity, let us introduce the notation

`k

(
i(k), d

(k)
t

)
= vTi Sied(k)t

+ f (k)I{i(k)>0} + β,

so that each retailer’s cost estimate can be written as

c̃k

(
i(k), d

(k)
t

)
=

I{
I
(k)
t ≥i(k)

}`k (i(k), d(k)t )
Pt
(
I
(k)
t ≥ i(k)

) ,

10We note that supremum and expectation can be interchanged in our case, since the comparator sequence, that
the supremum is taken with respect to, is deterministic. This would not have been the case, e.g., if the firm competed
against an adaptive adversary.
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for all k ∈ K. Also, let Ĩt be an independent copy of It. With this notation, we have that∑
(i(1),...,i(K))∈Ar

p(i(1),...,i(K))(t)Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)2]

=Et

(c0 (Ĩ(1)t , . . . , Ĩ
(K)
t , r

)
+
∑
k∈K

c̃k

(
Ĩ
(k)
t , d

(k)
t

))2


≤2Et

c0 (Ĩ(1)t , . . . , Ĩ
(K)
t , r

)2
+

(∑
k∈K

c̃k

(
Ĩ
(k)
t , d

(k)
t

))2
 ,

where the last step follows from the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
, which holds for all a, b ∈ R.

The first term can be trivially bounded by (f +Kβ)2. Regarding the second term, we have that

Et

(∑
k∈K

c̃k

(
Ĩ
(k)
t , d

(k)
t

))2


=Et

∑
j∈K

I{
I
(j)
t ≥Ĩ

(j)
t

}
Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)`j (Ĩ(j)t , d
(j)
t

) ·
∑
k∈K

I{
I
(k)
t ≥Ĩ

(k)
t

}
Pt
(
I
(k)
t ≥ Ĩ(k)t

)`k (Ĩ(k)t , d
(k)
t

)
=Et

∑
j∈K

∑
k∈K

I{
I
(j)
t ≥Ĩ

(j)
t

}I{
I
(k)
t ≥Ĩ

(k)
t

}
Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)
Pt
(
I
(k)
t ≥ Ĩ(k)t

)`j (Ĩ(j)t , d
(j)
t

)
`k

(
Ĩ
(k)
t , d

(k)
t

)
≤1

2
Et

∑
j∈K

∑
k∈K

 1

Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)2 +
1

Pt
(
I
(k)
t ≥ Ĩ(k)t

)2
 I{

I
(j)
t ≥Ĩ

(j)
t

}I{
I
(k)
t ≥Ĩ

(k)
t

}`j (Ĩ(j)t , d
(j)
t

)
`k

(
Ĩ
(k)
t , d

(k)
t

) ,
again using (a+ b)2 ≤ 2

(
a2 + b2

)
. We further have that

Et

(∑
k∈K

c̃k

(
Ĩ
(k)
t , d

(k)
t

))2


=Et

∑
j∈K

∑
k∈K

1

Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)2 I{I(j)t ≥Ĩ
(j)
t

}I{
I
(k)
t ≥Ĩ

(k)
t

}`j (Ĩ(j)t , d
(j)
t

)
`k

(
Ĩ
(k)
t , d

(k)
t

) ,
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due to the symmetry between j and k, which implies that

Et

(∑
k∈K

c̃k

(
Ĩ
(k)
t , d

(k)
t

))2


=Et

∑
j∈K

1

Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)2 I{I(j)t ≥Ĩ
(j)
t

}`j (Ĩ(j)t , d
(j)
t

)∑
k∈K

I{
I
(k)
t ≥Ĩ

(k)
t

}`k (Ĩ(k)t , d
(k)
t

)
≤2KβEt

∑
j∈K

1

Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)2 I{I(j)t ≥Ĩ
(j)
t

}`j (Ĩ(j)t , d
(j)
t

)
=2KβEt

∑
j∈K

`j

(
Ĩ
(j)
t , d

(j)
t

)
Pt
(
I
(j)
t ≥ Ĩ

(j)
t

)


≤4Kβ2
K∑
j=1

Et

 N∑
i=1

Pt
(
I
(j)
t = i

)
Pt
(
I
(j)
t ≥ i

)
 ,

where the inequalities follow from bounding from above `j(·, ·) by 2β.

It remains to bound the sums within the expectation, for all j. To this end, we observe that

our exploration distribution µ guarantees that P
[
I
(j)
t = i

]
≥ γ

NK holds for all i, j. Given this

lower bound, we can apply Lemma 16 of Alon et al. (2014) as done in the proof of Theorem 1:

N∑
i=1

Pt
(
I
(j)
t = i

)
Pt
(
I
(j)
t ≥ i

) ≤ 2 log

(
KN3

γ
+N + 2

)
+ 2.

Putting everything together, we obtain the desired result.

Proof of Theorem 3

By following closely the proof of Theorem 1 with our definition of µ and applying Eq. (8), we have

that

E[Rc(T )] ≤ log |Ar|
η

+ γ
∑
t∈T

∑
(i(1),...,i(K))∈Ar

µ(i(1),...,i(K))Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)]

+
η

2

∑
t∈T

∑
(i(1),...,i(K))∈Ar

p(i(1),...,i(K))(t)Et
[
c̃
(
i(1), . . . , i(K), r, d

(1)
t , . . . , d

(K)
t

)2]

≤K logN

η
+ γ
(
f +K(2β + f)

)
T

+ η

(
8K2β2 log

(
KN3

γ
+N + 2

)
+ 8K2β2 + (f + hr)2

)
,

where the last step uses Eq. (9) and Lemma 4. Substituting the prescribed values for γ and η

yields the statement of the theorem.
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Appendix 2: The AIM Policy

Let us briefly describe the AIM policy, introduced in Huh and Rusmevichientong (2009), origi-

nally proposed for i.i.d. demand sequences. In the case of discrete demand–see the AIM-discrete

variant, in Section 3.4 of Huh and Rusmevichientong (2009)–the policy has a guaranteed per-

formance only in the “partially censored” case, that is, if the learner has access to a lost-sales

indicator. It is based on the online gradient descent method of Zinkevich (2003): the key idea is

to compute recursively the sequence of auxiliary points

xt+1 = Π (xt − αtgt) ,

where gt is an estimate of the left derivative11 of the loss function c(·, dt), evaluated at xt, and

Π is a projection operator on the interval [0, D]. Recall that c(x, dt), as defined in Equation (1),

is convex, so it has a well-defined left derivative: −h for x < dt, b for x > dt, and [−h, b] for

x = dt. With the help of this sequence of auxiliary points, the actual (discrete) inventory levels

are chosen randomly as follows:

It = bxtc+Bt,

whereBt is a Bernoulli random variable with expectation xt− bxtc, so that Et [It] = xt. The most

pertinent question concerns the estimation of the gradients of c(·, dt) in a reliable way. Huh and

Rusmevichientong (2009) suggest to use

gt =

{
−b+ (h+ b) I{dt≤It}, if It = bxtc
−b+ (h+ b) I{dt≤It−1}, if It = dxte,

which is an unbiased estimator of the left derivative. Crucially, however, the construction of this

operator requires access to the lost sales indicator I{dt≤It}, which on many occasions may not be

available. In the absence of such an indicator, one can think of using the simpler estimator

ĝt = −b+ (h+ b) I{dt≤It−1},

instead of gt in the policy described above; this is actually the scheme that we implement in the

numerical experiments of Section 4. While this estimator can be computed given censored/sales

data, it is easy to see that it is a biased estimator of the left derivative. In particular, since

I{dt≤It−1} > I{dt≤It}, ĝt consistently overestimates the true derivative. This shortcoming severely

impacts the behavior of the policy: even for constant demand realizations, it always overshoots

the optimal inventory level. This effect is illustrated in Figure 3, where the AIM policy has a

linearly increasing regret in a very simple scenario: three possible order levels, {0, 1, 2}, and a

constant demand of 1.

11In general, the role of the left derivative can be played by any element of the subdifferential; we avoid this termi-
nology to maintain clarity of exposition.
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Figure 3: The misbehavior of the AIM policy.
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