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Abstract

We propose a new partial-observability
model for online learning problems where the
learner, besides its own loss, also observes
some noisy feedback about the other actions,
depending on the underlying structure of the
problem. We represent this structure by
a weighted directed graph, where the edge
weights are related to the quality of the feed-
back shared by the connected nodes. Our
main contribution is an efficient algorithm
that guarantees a regret of Õ(

√
α∗T ) after T

rounds, where α∗ is a novel graph property
that we call the effective independence num-
ber. Our algorithm is completely parameter-
free and does not require knowledge (or even
estimation) of α∗. For the special case of bi-
nary edge weights, our setting reduces to the
partial-observability models of Mannor and
Shamir (2011) and Alon et al. (2013) and
our algorithm recovers the near-optimal re-
gret bounds.

1 Introduction

The general framework of online learning considers se-
quential decision-making problems where a learner re-
peatedly chooses actions so as to minimize the sum
of losses assigned by the environment in response to
the learner’s actions. After making each decision, the
learner observes some feedback about the losses as-
signed by the environment. Traditionally, the litera-
ture considers two types of feedback: full-information
feedback (Cesa-Bianchi and Lugosi, 2006), where the
learner observes the losses associated with all poten-
tial decisions and bandit feedback (Auer et al., 2002)
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where the learner only observes the loss of its own
decisions. More recently, Mannor and Shamir (2011)
proposed a partial-feedback scheme that models sit-
uations that lie between the two extremes: in their
model, the learner observes losses associated with some
additional actions besides its own loss. While this
framework is often more realistic than either of the
two extremes, it fails to address one important prac-
tical concern: in reality, one can rarely expect perfect
side-observations to be available. In the current pa-
per, we propose a similar model that can incorporate
imperfect side-observations corrupted by various levels
of noise, depending on the problem structure.

As an illustration to our setting, consider the prob-
lem of controlling solar panels so as to maximize their
power production. In this problem, the learner has to
repeatedly decide about the orientation of the panels
so as to find alignments with strong sunshine. Be-
sides the amount of the energy being actually pro-
duced in the current alignment, the learner can also
possibly base its decisions on measurements of sensors
installed on the solar panel. However, the observations
generated by these sensors can be of variable quality
depending on visibility conditions, the quality of the
sensors and the alignment of the panels. Overall, this
problem can be seen as a bandit problem with noisy
side-observations fitting into our framework, where ac-
tions correspond to alignments and the noisy side ob-
servations give information about similar alignments.

Intuitively, in the case when the noise level of side
observations does not change with time, a possible
strategy one can think of is to use only the obser-
vations from the “most reliable” sources and ignore
the rest. Having made the distinction between “re-
liable” and “unreliable”, the learner could model the
observation structure in the framework of Mannor and
Shamir (2011); Alon et al. (2013), by treating every
“reliable” observation as perfect. This approach raises
two concerns. First, determining the cutoff for unreli-
able observations that allows the “most efficient” use
of information is a highly nontrivial design choice. As
we show later, knowing the perfect cutoff would help
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us to improve performance over the pure bandit setting
without side observations. Second, one has to address
the bias arising from handling every reliable observa-
tion as perfect. While one can think of many obvi-
ous ways to handle this bias by appropriate weighting
observations, none of these solutions are directly com-
patible with the model of Mannor and Shamir (2011);
Alon et al. (2013). Our main contribution in this pa-
per is an algorithm that is able to deal with both issues
without the knowledge of the optimal cutoff.

The main tool we use for modeling uncertain observa-
tions is a weighted directed graph encoding the quality
of side-observations. In this graph, the weight of the
arc i → j measures the quality of the side observa-
tion obtained from action j when selecting action i.
All weights are assumed to lie in the interval [0, 1],
with a weight of 1 corresponding to a perfectly accu-
rate side observation, and a weight of 0 correspond-
ing to a side observation of useless noise. Our model
generalizes the previously considered models of Man-
nor and Shamir (2011) and Alon et al. (2013): their
respective settings are captured by considering undi-
rected and directed graphs with binary weights in our
framework. In these special cases, the independence
number1 α of the observation graph plays a key role
in characterizing the complexity of learning: the mini-
max regret after T rounds is known to be Θ̃(

√
αT ). In

this paper, we define a similar quantity for weighted
graphs: the effective independence number α∗ and pro-
pose a learning algorithm that enjoys a regret bound
of Õ(

√
α∗T ) without any conditions made on the loss

sequence. The effective independence number α∗ is
closely related to the cutoff threshold for noisy obser-
vations. Intuitively, it is linked to the independence
number of a graph that only considers reliable obser-
vations. In practical scenarios, neither the cutoff nor
α∗ is ever known to the learner. In any case, the most
interesting situations for our setting are the cases when
we can bound α∗ by a small quantity.

While we are mainly inspired by situations where the
weights of the graph are fixed and known in advance,
we treat a more general setting where the observa-
tion structure can arbitrarily change over time and
the weights are revealed to the learner only after it
has made its decision. Our algorithm is fully adaptive
in the sense that it does not require any prior knowl-
edge of the sequence of observation graphs or the time
horizon. To achieve this result, we combine the im-
plicit exploration strategy introduced by Kocák et al.
(2014) with a loss estimation technique that effectively
suppresses the observation noise. For the special case

1The independence number of a graph G is defined as
the largest set of points in the graph such that no two
points within this set are connected.

of binary weights, the effective independence number
and the independence number coincide; otherwise α∗

is bounded by the number of actions N . Thus, the
regret bound of our algorithm is of near-optimal or-
der for binary graphs, and is always within logarith-
mic factors of the minimax regret of order

√
NT for

the standard multi-armed bandit problem without side
observations. As we will show later in the paper, there
are several interesting cases for which the effective in-
dependence number can be bounded in a nontrivial
way.

Independently of the work presented in this paper,
Wu et al. (2015) considered an essentially identical
partial-observability model for online learning: there,
side observations are modeled as zero-mean Guassian
random variables with variance depending on the cho-
sen action. It is easy to see that their model and ours
can capture exactly the same type of problems: a side
observation with zero variance in their model corre-
sponds to a perfect observation with weight 1 in our
model, while useless noise is equivalently represented
by infinite-variance or zero-weight observations. The
results of Wu et al. (2015) are, however, of a com-
pletely different flavor than the ones presented in the
current paper; the primary difference being that Wu
et al. assume that the losses are i.i.d. Gaussian ran-
dom variables, while our results hold without any as-
sumptions made on the sequence of losses. The main
contributions of Wu et al. are (i) a general problem-
dependent lower bound on the regret and (ii) algo-
rithms that work under the assumption that all the
useful (i.e., finite-variance) side-observations have the
same variance. This latter assumption does not use
the full strength of the framework where the variance
of side observations can vary for different actions. No-
tably, the regret bounds presented in our paper match
(up to logarithmic factors) the lower bounds of Wu
et al. (2015) for the special cases that they consider.
That said, their lower bounds and our upper bounds
are not directly comparable for more general observ-
ability graphs.

Besides the works mentioned above, several other
partial-observability models have been considered in
the literature. The most general of these settings is the
partial-monitoring framework considered by Bartók
et al. (2011, 2014). Unlike our model, this framework
is most useful for identifying and handling feedback
structures that are more restrictive than bandit feed-
back. In contrast, our framework deals with feedback
structures that are strictly more expressive than plain
bandit feedback. Similarly to Bartók et al., the recent
work of Alon et al. (2015) also considers a generaliza-
tion of the partial-observability models of Mannor and
Shamir (2011) and Alon et al. (2013) that may be more
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restrictive than bandit feedback. Another well-studied
setting in machine learning is where the observations
are corrupted by noise irrespective of the decisions
of the learner (see, e.g., Cesa-Bianchi et al., 2010).
Such settings do not pose an exploration-exploitation
dilemma to the learner and is thus are not relevant to
our goals.2

2 Background

Let us now give the formal definition of our learning
problem. We consider a sequential decision-making
problem where a learner and an environment inter-
act in the following way (see also Figure 1). In every
round t ∈ [T ] = {1, 2, . . . , T}, the environment selects
a weighted graph Gt with N nodes and a loss function
`t : [N ] → [0, 1] where `t,i is the loss associated with
arm i. The weight of each arc i → j in Gt is denoted
as st,(i,j) and assumed to lie in [0, 1]. Following the
environment’s move, the learner selects an action (or
arm) It ∈ [N ] and incurs the loss `t,It . Finally, the
learner also observes Gt and the feedback

ct,i = st,(It,i) · `t,i +
(
1− st,(It,i)

)
· ξt,i

for every arm i, where ξt,i is the observation noise.
We assume that each ξt,i is zero-mean, satisfies |ξt,i| ≤
R for some known constant R ≥ 0, and is generated
independently of all other noise terms and the history
of the process3. The interaction history between the
learner and the environment up to the end of round t
is captured by the sigma-algebra Ft. In this work,
we consider adaptive (or non-oblivious) environments
that are allowed to choose `t and Gt in full knowledge
of the history Ft−1. We also assume that all graphs Gt
are such that st,(i,i) = 1 for all i, that is, the learner
always observes its own loss `t,It without corruption.

The goal of the learner is to choose its actions so as to
ensure that its cumulative loss grows as slowly as pos-
sible. As traditional in the online learning literature
(Cesa-Bianchi and Lugosi, 2006), we measure the per-
formance of the learner in terms of the (total expected)
regret defined as the gap between the expected loss of
the player and the expected loss of the best fixed-arm
policy:

RT = max
i∈[N ]

E

[
T∑
t=1

`t,It −
T∑
t=1

`t,i

]
.

2In fact, it can be shown by the techniques of Devroye
et al. (2013) that in the setting of online learning with
finite actions and observations corrupted by the same level
of i.i.d. noise, the simplest possible strategy of following
the leader gives near-optimal guarantees.

3We are mainly interested in the setting where R =
Θ(1), that is, we are neither in the easy case where R is
close to zero or the hard one where it may be as large as
Ω(

√
T )

Parameters:
set of arms [N ], number of rounds T .

For all t = 1, 2, . . . , T repeat

1. The environment picks a loss function `t :
[N ] → [0, 1] and a directed weighted graph
Gt with edge weights in [0, 1].

2. Based on its previous observations (and pos-
sibly some source of randomness), the learner
picks an action It ∈ [N ].

3. The learner suffers loss `t,It .

4. The learner observes Gt and the feedback

ct,i = st,(It,i) · `t,i +
(
1− st,(It,i)

)
· ξt,i

for every arm i ∈ [N ].

Figure 1: The protocol of online learning with noisy
observations.

In this paper, we are interested in constructing algo-
rithms for the learner that guarantees a tight upper
bound on the regret. Before proposing our algorithm,
a few comments are in order. First, notice that our
framework technically contains the settings of Mannor
and Shamir (2011) and Alon et al. (2013) as special
cases where the edge weights are chosen from {0, 1}: in
this situation, our framework suggests that the learner
either gets perfect side-observations or just zero-mean
noise, which can be safely ignored by the learner. Also
notice that since we assume st,(i,i) = 1 for all i, our
problem is not harder for the learner than the stan-
dard multi-armed bandit problem. Indeed, thanks to
this property, the learner could simply ignore all side-
observations and run a bandit algorithm such as Exp3
of Auer et al. (2002) that guarantees a regret bound
of O(

√
NT logN).

3 Algorithms and main result

This section presents our main contribution: a learning
algorithm with strong theoretical performance guar-
antees for the setting described in the previous sec-
tion. As the intuitions underlying our algorithm are
rather intricate, we will proceed gradually: we first
identify the main challenges of constructing learning
algorithms for our setting, then offer a solution that
overcomes these difficulties in an efficient manner.

A central concept in our performance guarantees is a
new graph property that we call effective independence
number, defined as follows:

Definition 1. Let G be a weighted directed graph with
N nodes and edge weights bounded in [0, 1]. For all
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ε ∈ [0, 1], let G(ε) be the (unweighted) directed graph
where arc i→ j is present if and only if si,j ≥ ε in G.
Letting α(ε) be the independence number of G(ε), the
effective independence number of G is defined as

α∗ = min
ε∈[0,1]

α(ε)

ε2
.

Roughly speaking, the effective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the effective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the effective independence numbers (α∗t )

of the observation graphs (Gt) as Õ
(√∑

t α
∗
t

)
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate ̂̀t,i of
the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
(
−ηt

∑t−1
s=1

̂̀
s,i

)
in

round t, where ηt > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cutoff parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm: Exp3-IXt

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

̂̀(b)
t,i =

ct,i∑N
j=1 pt,jst,(j,i) + γt

. (1)

where b stands for “basic”. Here, γt ≥ 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002)

1: Initialization: L̂0,i = 0 for all i ∈ [N ].
2: for t = 1 to T do
3: Set ηt and γt.
4: Construct the probability distribution pt with.

pt,i =
exp
(
− ηtL̂t−1,i

)∑N
j=1 exp

(
− ηtL̂t−1,j

) .
5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 − st,(It,i))ξt,i for

all i ∈ [N ].
8: Observe graph Gt.
9: Construct loss estimates ̂̀t,i.

10: Set L̂t,i = L̂t−1,i + ̂̀t,i.
11: end for

γt = 0, makes estimates above unbiased since

E [ct,i| Ft−1] =

 N∑
j=1

pt,jst,(j,i)

 · `t,i,
where we used our assumption that E [ξt,i] = 0. Us-
ing these estimates in our algorithmic template Exp3
(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This effect is realized by the estimates

̂̀(t)
t,i =

ct,iI{st,(It,i)≥εt}∑N
j=1 pt,jst,(j,i)I{st,(j,i)≥εt} + γt

, (2)

where εt ∈ [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-
IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:
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Theorem 1. For all t, let α∗t be the effective inde-
pendence number of Gt. Then, there exists a setting
of (ηt) and (γt) for which the regret of Exp3-IXt is
bounded as

RT = Õ

(1 +R)

√√√√ T∑
t=1

α(Gt(εt))

ε2t

 .

The theorem is proved in the Appendix. Note that

if we choose εt = arg minε∈[0,1]
α(Gt(ε))

ε2 for all t, the

above bound essentially becomes Õ(
√
α∗avgT ) where

α∗avg = 1
T

∑T
t=1 α

∗
t is the average effective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning εt can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the effective indepen-
dence number of a weighted graph can require com-
puting up to N2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm: Exp3-WIX

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
effective independence numbers. The key element of
this algorithm is using loss estimates of the form

̂̀
t,i =

st,(It,i) · ct,i∑N
j=1 pt,js

2
t,(j,i) + γt

, (3)

where γt ≥ 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the difference from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting γt = 0 since

E
[
st,(It,i) · ct,i

∣∣Ft−1] =

 N∑
j=1

pt,js
2
t,(j,i)

 · `t,i.
The role of this scaling is pulling the noise term ξt,i
toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing effect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (ηt)t and the sequence of IX parameters

(γt)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ηt and γt is

Qt =

N∑
i=1

pt,i∑N
j=1 pt,js

2
t,(j,i) + γt

,

defined for all t.

Theorem 2. For all t, let α∗t be the effective indepen-
dence number of Gt. Then, setting

ηt =

√
logN

2(1 +R+R2)(N +
∑t−1
s=1Qs)

and γt = Rηt, the regret of Exp3-WIX is bounded as

RT = Õ

(1 +R)

√√√√N +

T∑
t=1

α∗t

 .

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX
grows as Õ(

√
α∗avgT ). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the effective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The effective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the effective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small effective in-
dependence numbers.

The first observation we make is that the effective in-
dependence number is always well-defined, as the func-
tion α(ε)/ε2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N
discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the effective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that α∗ ≤ α(1)/1 ≤ N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:
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Figure 2: Dependence of α∗ on the size of the graph with random weights, 100 graphs for each size.

the regret of Exp3-WIX is always within logarithmic
factors of the minimax regret of order

√
NT for the

standard multi-armed bandit problem without side ob-
servations.

It is also easy to see that the effective independence
number exactly matches the independence number if
all edge weights are binary. This in particular implies
that for such graphs, the regret of Exp3-WIX grows
at the minimax rate established by Alon et al. (2013)
up to logarithmic factors, matching the performance
guarantees of the algorithms of Alon et al. (2013) and
Kocák et al. (2014). Another interesting case is when
all weights are either zero or equal to a fixed constant
ε, also assuming si,i = ε. In this case, the effective in-
dependence number becomes α

ε2 , where α is the inde-
pendence number of the underlying unweighted graph.
This case was studied in the recent paper of Wu et al.
(2015), who show (in their Corollary 4) that the mini-
max regret in this case is of Θ(

√
αT/ε)—implying that

our performance bounds for this case are again near-
optimal4. Also observe that whenever all weights are
bounded by some constant c > 0 from below, the ef-
fective independence number becomes upper-bounded
by 1/c2, irrespective of the number of actions. That
is, our algorithm can achieve an exponential perfor-
mance gain over bandit algorithms in terms of N by
leveraging such feedback structures.

Let us now describe a class of weighted graphs with
bounded effective independence numbers. Consider
a geometric graph whose nodes represent vertices of
a uniform k × k grid on [0, 1]2. The weight of edge
(i, j) is given as 1/(1 + d2i,j), where di,j is the Eu-
clidean distance of the respective vertices represented
by i and j. This graph can be used to model a sen-
sor network where the measurement accuracy of mea-
surements degrades with the distance. Thus, reading

4While we prove our bounds for the case where si,i = 1
for all i, it is easy to extend our results to the case where
all such weights equal a constant in [0, 1].

the measurements from one sensor will give informa-
tion about the measurements of nearby sensors as well.
Intuitively, increasing the number of sensors (i.e., re-
fining the grid) should only improve the information-
sharing between sensors up to a certain level. It is
natural to expect a reasonable graph property quanti-
fying the information-sharing efficiency to capture this
intuition. We have numerically evaluated the effec-
tive independence number of a number of graphs from
the above family to test if it satisfies the above crite-
rion. We have found that the effective independence
numbers remain bounded by a constant (roughly 30)
even when refining the grid infinitely, confirming that
the effective independence number captures the above
phenomenon.

Finally, we conducted some numerical simulations to
evaluate the average effective independence numbers
of certain types of weighted random graphs. In partic-
ular, we considered random graphs with i.i.d. weights
distributed uniformly on [0, 1], [ 12 , 1] and [0, 12 ]. The
distributions of the effective independence numbers are
illustrated as scatter plots for different graph sizes on
Figure 2. First, observe that the average α∗ of U(0, 1)-
weighted graphs shows a logarithmic trend in terms of
N . The results concerning U( 1

2 , 1)-weighted graphs
are not surprising given that we have already estab-
lished that graphs with bounded weights have finite
effective independence numbers. For U(0, 12 )-weighted
graphs, we see that α∗ grows linearly up until a cer-
tain threshold, when it starts to follow a logarithmic
trend. The intuition behind this linear behavior for
small graphs is the following. First, observe that the
optimal value of ε is greater than 1/

√
N . That is, un-

til N is large enough so that a critical mass of edges
are above this quantity, the optimal value of α(ε)/ε2

remains N . Once N is beyond this critical value, α∗

starts following a logarithmic trend.
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5 Analysis

Let us now turn to proving Theorem 2. Our analysis is
slightly more general than necessary for proving Theo-
rem 2, in that they allow any sequence of learning rates
and IX parameters. To avoid clutter, we will omit the
t indices from st,(·,·). In principle, our analysis com-
bines (more-or-less) standard tools for analyzing Exp3
with adaptive learning rates and ideas from Alon et al.
(2013) and Kocák et al. (2014), while also heavily ex-
ploiting the structure of our loss estimates (3). In par-
ticular, these estimates allow us to bound the expected
regret of Exp3-WIX in terms of the quantities (Qt).

Lemma 1. Let (ηt)t and (γt)t be two (Ft)-measurable
non-increasing sequences satisfying γt ≥ ηtR for all t.
Then, the expected regret of Exp3-WIX is bounded as

RT ≤ E

[
logN

ηT
+

T∑
t=1

(
γt + (1 +R2)ηt

)
Qt

]
.

The full proof of the lemma is delegated to the Ap-
pendix. Below, we provide a brief sketch covering the
key parts of the proof.

Proof sketch. By straightforward adaptation of the
techniques of Auer et al. (2002); Bubeck and Cesa-
Bianchi (2012); Györfi and Ottucsák (2007); Kocák
et al. (2014), we can prove the bound

E

[
T∑
t=1

N∑
i=1

pt,i ̂̀t,i] ≤E [L̂T,j +
logN

ηT

]

+ E

[
T∑
t=1

ηt

N∑
i=1

pt,i

(̂̀
t,i

)2]
.

for any fixed j Thus, we are left with the problem of
relating the left-hand side to the total expected loss
of the learner and to upper-bounding the right-hand
side. As the first step, observe that

E

[
N∑
i=1

pt,i ̂̀t,i
∣∣∣∣∣Ft−1

]
=

N∑
i=1

pt,i

∑N
j=1 pt,js

2
j,i`t,i∑N

j=1 pt,js
2
j,i + γt

≥
N∑
i=1

pt,i`t,i − γtQt,

where we used E [ξt,i| Ft−1] = 0 in the first step and
sj,i ≤ 1 in the second. The first term on the right-
hand side can be bounded by LT,j by observing that

E
[ ̂̀
t,j

∣∣∣Ft−1] ≤ `t,j holds for all fixed j by the defini-

tion of the loss estimates (3). Finally, the last term is

bounded as

E

[
N∑
i=1

pt,i

(̂̀
t,i

)2∣∣∣∣∣Ft−1
]
≤

N∑
i=1

pt,i

∑N
j=1 pt,js

2
j,i(1 +R2)(∑N

j=1 pt,js
2
j,i + γt

)2
≤

N∑
i=1

pt,i
1 +R2(∑N

j=1 pt,js
2
j,i + γt

) = (1 +R2)Qt.

The statement of the lemma follows from putting ev-
erything together.

Observe that since we assume si,i = 1 for all i, Qt can
be trivially bounded by N . As a result, it is straight-
forward to show that the regret of Exp3-WIX is of
order

√
TN logN . The remaining challenge is thus

bounding Qt in a nontrivial way, capturing the struc-
ture of the observation graph Gt. The following lemma
provides such a bound in terms of the effective inde-
pendence number of Gt.

Lemma 2. Let α∗t be the effective independence num-
ber of Gt. Then, for any positive γt,

Qt ≤ 2α∗
(

1 + log

(
1 +

N2/γt +N2 +N

α∗

))
.

The proof of this statement builds on results by Alon
et al. (2013) and Kocák et al. (2014). Below, we give
a short sketch of the full proof that is given in the
Appendix.

Proof sketch. Let us define ε∗ = arg minε∈[0,1] α(ε)/ε2

and observe that

pt,i∑N
j=1 pt,js

2
j,i + γt

≤ 1

ε2
· pt,i
pt,i +

∑
j 6=i pt,jI{sj,i≥ε} + γt

holds for all ε ∈ [0, 1], and in particular for ε∗. Apply-
ing a variant of Lemma 1 in Kocák et al. (2014) to the
binary graph Gt(ε∗), we obtain

Qt ≤
2

ε2∗
·
(
αt(ε∗) log

(
1 +

ε2∗N
2/γt +N + 1

αt(ε∗)

)
+

2

ε2∗

)
.

The statement of the lemma follows from using the
trivial bound αt(ε∗) ≥ 1.

Now, every ingredient is ready for proving Theorem 2.
In particular, plugging in the choice of the parameters
ηt and γt into the bound of Lemma 1 and applying
Lemma 3.5 of ?, we obtain

RT ≤ 2

√√√√2(1 +R+R2)

(
N +

T∑
t=1

Qt

)
logN.

Then, the statement of the theorem follows from com-
bining the above with the bound of Lemma 2.
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Figure 3: Comparison of total regrets of the algorithms at time T for static and adaptive learning rates.

6 Experiments

In this section, we empirically compare Exp3-WIX
to some of its natural competitors: Exp3-IXt, vanilla
Exp3 that ignores all side observations and a straight-
forward variation of the Exp3-IX algorithm of Kocák
et al. (2014). This latter algorithm, referred to as
Exp3-IXb (with “b” standing for “basic”), uses a
threshold ε to decide which observations are too noisy
to use and which are the ones to be retained: All
the edges with weights smaller than a parameter ε are
deleted and the rest of the weights are set to 1. The
algorithm then plays basic Exp3-IX for the resulting
binary graph. That is, the difference between Exp3-
IXt and Exp3-IXb is that the latter does not adjust
for the bias arising from using unreliable side observa-
tions. Note that Exp3-IXb comes without any formal
performance guarantee.

For the purpose of the experiments, we assumed to
have 25 actions forming 5×5 grid embedded in a plane.
The distance of neighbors in the grid was set to be 1.
Using this structure, we defined the weight connect-
ing two nodes as min

{
3/d2, 1

}
, and d is the Euclidean

distance between actions in the grid. This choice is
motivated by the fact that the intensity of many phys-
ical phenomena decays proportionally to the inverse
square of the distance (e.g., gravitational force, elec-
tromagnetic phenomena).

A simple idea for constructing synthetic loss sequences
is letting the instantaneous loss of each action evolve as
a random walk with small Gaussian increments (with
appropriate truncations when the loss goes beyond the
[0, 1] interval). In our experiments, we took this idea
one step further: We constructed 20 independent ran-
dom walks for each action and alternated them, that
is, we used one random walk each to define every twen-
tieth loss. Using this procedure, we generated a sin-
gle loss sequence of T = 5, 000 steps to test the algo-
rithms. For a fair comparison, we ran each algorithm
for their respective theoretically motivated adaptive
learning rates, and also for a number of static learning
rates between 0.001 and 1. For static learning rates,

we observed the best performance of Exp3 for learn-
ing rates around 0.01, all the other algorithms did well
for learning rates around 0.1. Due to the lack of space,
we included plots only for these two learning rates.

We ran Exp3-IXb and Exp3-IXt for several values of
ε from 0 to 1. In all experiments, we set the implicit
exploration parameters to zero. This is well-justified
in the case of undirected graphs, as shown by the anal-
ysis of Alon et al. (2013). Figure 3 shows the perfor-
mance of the algorithms for η = 0.01, η = 0.1 and the
adaptive learning rates for each algorithm as a func-
tion of the threshold parameter ε. Each curve on this
graph is the average of the total regrets measured in
10 independent runs with error bars proportional to
the empirical standard deviation.

Our experiments confirm that guessing the right value
for the threshold parameter is indeed a very difficult
problem: while Exp3-WIX performs consistently well
for all parameter settings, Exp3-IXt and Exp3-IXb
only perform reasonably well for moderate values of ε
that are not supported by theory. In fact, the value
of ε optimizing α(ε)/ε2 is 1, which is shown to per-
form poorly in the experiments. Perhaps surprisingly,
Exp3-IXb performs well despite the obvious bias in
its loss estimates. The performance of Exp3 is signifi-
cantly worse than Exp3-WIX, confirming the benefit
of side-observations, however noisy they are.

7 Conclusions and open problems

The main contribution of our work is introducing a
new partial-observability model for adversarial online
learning and proposing an efficient learning algorithm
with rigorous performance guarantees for this setting.
Our regret bounds depend on a newly introduced
graph property that we call the effective independence
number. While the recent results of Wu et al. (2015)
suggest that our bounds are minimax optimal in some
special cases of our framework, it is not yet known
whether the effective independence number is the ex-
act quantity that characterizes the minimax regret in
general—we leave this exciting question open for fu-
ture investigation.
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A Proof of Lemma 1

The first part of the analysis is similar to the analysis of the basic Exp3 algorithm besides, we are using an
adaptive learning rate ηt to obtain anytime regret bound, and therefore, we do not need to know the stopping
time T of the algorithm. We start by introducing some notation. Let

Wt =
1

N

N∑
i=1

e−ηtL̂t−1,i and W ′t =
1

N

N∑
i=1

e−ηt−1L̂t−1,i .

Following the proof of Lemma 1 of Györfi and Ottucsák (2007), we track the evolution of log(W ′t+1/Wt) to
control the regret. We have

1

ηt
log

W ′t+1

Wt
=

1

ηt
log

N∑
i=1

1
N e
−ηtL̂t,i

Wt
=

1

ηt
log

N∑
i=1

1
N e
−ηtL̂t−1,ie−ηt

̂̀
t,i

Wt

=
1

ηt
log

N∑
i=1

pt,ie
−ηt ̂̀t,i ≤ 1

ηt
log

N∑
i=1

pt,i

(
1− ηt ̂̀t,i + (ηt ̂̀t,i)2) (4)

=
1

ηt
log

(
1− ηt

N∑
i=1

pt,i ̂̀t,i + η2t

N∑
i=1

pt,i(̂̀t,i)2) ,
where in (4), we used the inequality exp(−x) ≤ 1− x + x2 that holds for x ≥ −1. The use of this inequality is

made possible by the definitions of ηt and γt that guarantee ηt ̂̀t,i ≥ −1 for all i. Further, we use the inequality
log(1− x) ≤ −x, which holds for all x, to upper bound last term

N∑
i=1

pt,i ̂̀t,i ≤ [ logWt

ηt
−

logW ′t+1

ηt

]
+

N∑
i=1

ηtpt,i(̂̀t,i)2
=

[(
logWt

ηt
− logWt+1

ηt+1

)
+

(
logWt+1

ηt+1
−

logW ′t+1

ηt

)]
+

N∑
i=1

ηtpt,i(̂̀t,i)2. (5)

The second term in brackets on the right hand side is upper bounded by zero, since

Wt+1 =

N∑
i=1

1

N
e−ηt+1L̂t,i =

N∑
i=1

1

N

(
e−ηtL̂t,i

) ηt+1
ηt ≤

(
N∑
i=1

1

N
e−ηtL̂t,i

) ηt+1
ηt

= (W ′t+1)
ηt+1
ηt ,

Using Jensen’s inequality to the concave function x
ηt+1
ηt for x ∈ R. The function is concave since ηt+1 ≤ ηt by

definition. Taking logarithms in the above inequality, we get

logWt+1

ηt+1
−

logW ′t+1

ηt
≤ 0.

Using this inequality, we can simplify (5)

N∑
i=1

pt,i ̂̀t,i ≤ ηt N∑
i=1

pt,i

(̂̀
t,i

)2
+

(
logWt

ηt
− logWt+1

ηt+1

)
.

Taking conditional expectations with respect to the σ-algebra Ft−1, generated by the history up to time t − 1,
and summing up both sides over the time, we get

T∑
t=1

E

[
N∑
i=1

pt,i ̂̀t,i
∣∣∣∣∣Ft−1

]
≤

T∑
t=1

E

[
ηt

N∑
i=1

pt,i

(̂̀
t,i

)2∣∣∣∣∣Ft−1
]

+

T∑
t=1

E
[

logWt

ηt
− logWt+1

ηt+1

∣∣∣∣Ft−1]. (6)
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For the following part of the analysis, we use a slightly more general form of our loss estimates:

̂̀
t,i =

N∑
i=1

pt,i
sδIt,ict,i∑N

j=1 pt,js
1+δ
j,i + γt

=

N∑
i=1

pt,i
s1+δIt,i

`t,i + sδIt,i(1− sIt,i)ξt,i∑N
j=1 pt,js

1+δ
j,i + γt

.

Later we show that δ = 1 is optimal, which recovers the loss estimates (3). The next step is to bound the three
expectations involved in Equation (6). For the first expectation we have

E

[
N∑
i=1

pt,i ̂̀t,i
∣∣∣∣∣Ft−1

]
= E

[
N∑
i=1

pt,i
sδIt,ict,i∑N

j=1 pt,js
1+δ
j,i + γt

∣∣∣∣∣Ft−1
]

=

N∑
i=1

pt,i

∑N
j=1 pt,js

1+δ
j,i `t,i∑N

j=1 pt,js
1+δ
j,i + γt

≥
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i∑N
j=1 pt,js

1+δ
j,i + γt

=

N∑
i=1

pt,i`t,i − γtQt(δ),

where

Qt(δ) =

N∑
i=1

pt,i∑N
j=1 pt,js

1+δ
j,i + γt

.

For the second expectation we have

E

[
N∑
i=1

pt,i(̂̀t,i)2
∣∣∣∣∣Ft−1

]
=

N∑
i=1

pt,i
E
[
s2+2δ
It,i

∣∣∣Ft−1] `2t,i + E
[
s2δIt,i(1− sIt,i)

2
∣∣Ft−1]E [ξ2t,i∣∣Ft−1](∑N

j=1 pt,js
1+δ
j,i + γt

)2
≤

N∑
i=1

pt,i

∑N
j=1 pt,js

2+2δ
j,i +

∑N
j=1 pt,js

2δ
j,iR

2(∑N
j=1 pt,js

1+δ
j,i + γt

)2
≤

N∑
i=1

pt,i
1 +R2(∑N

j=1 pt,js
1+δ
j,i + γt

) = (1 +R2)Qt(δ)

Where the last inequality holds for δ ≥ 1. For the third expectation we have

−E
[

logWT+1

ηT+1

]
≤ min
k∈[N ]

(
−E

[
log 1

N e
−ηT L̂T,k

ηT

])
= E

[
logN

ηT

]
+ min
k∈[N ]

(
E
[
L̂T,k

])
.

To conclude, observe that Qt(1) ≤ Qt(d) holds almost surely and thus we can set δ = 1. Then the statement of
the lemma follows from combining all of the bounds above.

B Proof of Lemma 2

As done in the analysis of Alon et al. (2013); Kocák et al. (2014), we use following two lemmas to bound Qt.

Lemma 3. (cf. Lemma 10 of Alon et al. (2013)) Let G be a directed graph, with V = {1, . . . , N}. Let d−i be the
indegree of the node i and α = α(G) be the independence number of G. Then

N∑
i=1

1

1 + d−i
≤ 2α log

(
1 +

N

α

)
.

Lemma 4. (cf. Lemma 12 of Alon et al. (2013)) If a, b ≥ 0 and a+ b ≥ B > A > 0, then

a

a+ b−A
≤ a

a+ b
+

A

B −A

Before using the previous lemmas, we need to discretize the values of pt,i. Let p̂t,i be the discretized version of
pt,i which satisfies p̂t,i = k/M for some integer k, M = dε2N2/γte, and p̂t,i − 1 < pt,i ≤ p̂t,i.
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pt,1 p̂t,1 pt,2 p̂t,2

0 1

1
M

Using Lemma 4 for a = p̂t,i, b =
∑
j 6=i p̂t,jI{sj,i ≥ ε}+ γ/ε, B = γ/ε, and A = N/M we get

pt,i
pt,i +

∑
j 6=i pt,js

2
j,i + γt

≤ pt,i
ε2pt,i +

∑
j 6=i ε

2pt,jI{sj,i ≥ ε}+ γt

=
1

ε2
pt,i

pt,i +
∑
j 6=i pt,jI{sj,i ≥ ε}+ γt/ε2

≤ 1

ε2
p̂t,i

p̂t,i +
∑
j 6=i p̂t,jI{sj,i ≥ ε}+ γt/ε2 −N/M

≤ 1

ε2

(
p̂t,i

p̂t,i +
∑
j 6=i p̂t,jI{sj,i ≥ ε}

+
N/M

γt/ε2 −N/M

)

≤ 1

ε2

(
p̂t,i

p̂t,i +
∑
j 6=i p̂t,jI{sj,i ≥ ε}

+
2

N

)
.

From this point, one can follow the proof of Lemma 1 in Kocák et al. (2014) to prove

Qt ≤
1

ε2

N∑
i=1

p̂t,i
p̂t,i +

∑
j 6=i p̂t,jI{sj,i ≥ ε}

+
2

ε2
≤ 2

ε2
αt(ε) log

(
1 +

M +N

αt(ε)

)
+

2

ε2

≤ 2

ε2
αt(ε) log

(
1 +

N2/γt +N/ε2 + 1/ε2

αt(ε)/ε2

)
+

2

ε2
,

This bound holds for every ε ∈ [0, 1], therefore, it holds also for ε∗. Finally, using 1/ε2 ≤ N and α(ε) ≥ 1, we
can recover the statement of the lemma.

C The proof of Theorem 1

The proof of Theorem 1 roughly follows the proof of Theorem 2 with one key difference. For simplicity, let us
define

Q′t =

N∑
i=1

pt,i∑N
j=1 pt,jsj,iI{sj,i≥εt} + γt

and consider an oblivious adversary that chooses the whole sequence of observations graphs deterministically
before the first round. Our starting point is the bound of Equation (6), which also holds for Exp3-IXt. First,
we have

E

[
N∑
i=1

pt,i ̂̀t,i
∣∣∣∣∣Ft−1

]
= E

[
N∑
i=1

pt,i
ct,iI{sIt,i≥εt}∑N

j=1 pt,jsj,iI{sj,i≥εt} + γt

∣∣∣∣∣Ft−1
]

=

N∑
i=1

pt,i

∑N
j=1 pt,jsj,iI{sj,i≥εt}`t,i∑N
j=1 pt,jsj,iI{sj,i≥εt} + γt

≥
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i∑N
j=1 pt,jsj,iI{sj,i≥εt} + γt

=

N∑
i=1

pt,i`t,i − γtQ′t.
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Furthermore,

E

[
N∑
i=1

pt,i(̂̀t,i)2
∣∣∣∣∣Ft−1

]
=

N∑
i=1

pt,i

E
[
s2It,iI{sIt,i≥εt}

∣∣∣Ft−1] `2t,i + E
[(

1− sIt,iI{sIt,i≥εt}
)2∣∣∣∣Ft−1]E [ξ2t,i∣∣Ft−1](∑N

j=1 pt,jsj,iI{sj,i≥εt} + γt

)2
≤

N∑
i=1

pt,i

∑N
j=1 pt,js

2
j,i +R2(∑N

j=1 pt,jsj,iI{sj,i≥εt} + γt

)2 ≤ 1

εt

N∑
i=1

pt,i
1 +R2∑N

j=1 pt,jsj,iI{sj,i≥εt} + γt

=
(1 +R2)

εt
Q′t,

where the last inequality uses that
∑N
j=1 pt,jsj,iI{sj,i≥εt} + γt ≥ εt. Now, following the proof of Lemma 2, we

can prove

Q′t ≤ 2
α(Gt(εt))

εt

(
1 + log

(
1 +

N2/γt +N + 1

α

))
.

For finishing the proof, let us set ηt = η ≥ 0 and γt = γ ≥ 0 for all t. Putting all of the above results together,
we get

RT ≤
logN

η
+ γ

T∑
t=1

Q′t + η(1 +R2)

T∑
t=1

Q′t
εt

≤ logN

η
+ γC1

T∑
t=1

α(Gt(εt))

εt
+ ηC2(1 +R2)

T∑
t=1

α(Gt(εt))

ε2t
,

where C1 and C2 are O (log (N/γ)). Optimizing the choice of η and γ concludes the proof of Theorem 1.


