
Offline Primal-Dual Reinforcement Learning for
Linear MDPs

Germano Gabbianelli
Universitat Pompeu Fabra

Barcelona, Spain
germano.gabbianelli@upf.edu

Gergely Neu
Universitat Pompeu Fabra

Barcelona, Spain
gergely.neu@gmail.com

Nneka Okolo
Universitat Pompeu Fabra

Barcelona, Spain
nnekamaureen.okolo@upf.edu

Matteo Papini
Universitat Pompeu Fabra

Barcelona, Spain
matteo.papini@upf.edu

Abstract

Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from
a fixed dataset of transitions collected by another policy. This problem has at-
tracted a lot of attention recently, but most existing methods with strong theoretical
guarantees are restricted to finite-horizon or tabular settings. In constrast, few
algorithms for infinite-horizon settings with function approximation and minimal
assumptions on the dataset are both sample and computationally efficient. Another
gap in the current literature is the lack of theoretical analysis for the average-reward
setting, which is more challenging than the discounted setting. In this paper, we
address both of these issues by proposing a primal-dual optimization method based
on the linear programming formulation of RL. Our key contribution is a new
reparametrization that allows us to derive low-variance gradient estimators that can
be used in a stochastic optimization scheme using only samples from the behavior
policy. Our method finds an ε-optimal policy with O(ε−4) samples, improving
on the previous O(ε−5), while being computationally efficient for infinite-horizon
discounted and average-reward MDPs with realizable linear function approxima-
tion and partial coverage. Moreover, to the best of our knowledge, this is the first
theoretical result for average-reward offline RL.

1 Introduction

We study the setting of Offline Reinforcement Learning (RL), where the goal is to learn an ε-optimal
policy without being able to interact with the environment, but only using a fixed dataset of transitions
collected by a behavior policy. Learning from offline data proves to be useful especially when
interacting with the environment can be costly or dangerous [16].

In this setting, the quality of the best policy learnable by any algorithm is constrained by the quality
of the data, implying that finding an optimal policy without further assumptions on the data is not
feasible. Therefore, many methods [23, 33] make a uniform coverage assumption, requiring that the
behavior policy explores sufficiently well the whole state-action space. However, recent work [17, 31]
demonstrated that partial coverage of the state-action space is sufficient. In particular, this means that
the behavior policy needs only to sufficiently explore the state-actions visited by the optimal policy.

Moreover, like its online counterpart, modern offline RL faces the problem of learning efficiently in
environments with very large state spaces, where function approximation is necessary to compactly
represent policies and value functions. Although function approximation, especially with neural

Preprint. Under review.

Algorithm Partial
Coverage

Polynomial
Sample
Complexity

Polynomial
Computational
Complexity

Function
Approximation

Infinite Horizon

Discounted Average-Reward

FQI [23] ✗ ✓ ✓ ✓ ✓ ✗

Rashidinejad et al. [31] ✓ ✓ ✓ ✗ ✓ ✗

Jin et al. [14]
Zanette et al. [38] ✓ ✓ ✓ ✓ ✗ ✗

Uehara & Sun [32] ✓ ✓ ✗ ✓ ✓ ✗

Cheng et al. [9] ✓ O(ε−5) superlinear ✓ ✓ ✗

Xie et al. [36] ✓ O(ε−5) O(n7/5) ✓ ✓ ✗

Ours ✓ O(ε−4) O(n) ✓ ✓ ✓

Table 1: Comparison of existing offline RL algorithms. The table is divided horizontally in two
sections. The upper section qualitatively compares algorithms for easier settings, that is, methods
for the tabular or finite-horizon settings or methods which require uniform coverage. The lower
section focuses on the setting considered in this paper, that is computationally efficient methods for
the infinite horizon setting with function approximation and partial coverage.

networks, is widely used in practice, its theoretical understanding in the context of decision-making
is still rather limited, even when considering linear function approximation.

In fact, most existing sample complexity results for offline RL algorithms are limited either to the
tabular and finite horizon setting, by the uniform coverage assumption, or by lack of computational
efficiency — see the top section of Table 1 for a summary. Notable exceptions are the recent works of
Xie et al. [36] and Cheng et al. [9] who provide computationally efficient methods for infinite-horizon
discounted MDPs under realizable linear function approximation and partial coverage. Despite
being some of the first implementable algorithms, their methods work only with discounted rewards,
have superlinear computational complexity and find an ε-optimal policy with O(ε−5) samples – see
the bottom section of Table 1 for more details. Therefore, this work is motivated by the following
research question:

Can we design a linear-time algorithm with polynomial sample complexity for the discounted and
average-reward infinite-horizon settings, in large state spaces under a partial-coverage assumption?

We answer this question positively by designing a method based on the linear-programming (LP)
formulation of sequential decision making [20]. Albeit less known than the dynamic-programming
formulation [3] that is ubiquitous in RL, it allows us to tackle this problem with the powerful tools
of convex optimization. We turn in particular to a relaxed version of the LP formulation [21, 2]
that considers action-value functions that are linear in known state-action features. This allows to
reduce the dimensionality of the problem from the cardinality of the state space to the number of
features. This relaxation still allows to recover optimal policies in linear MDPs [37, 13], a structural
assumption that is widely employed in the theoretical study of RL with linear function approximation.

Our algorithm for learning near-optimal policies from offline data is based on primal-dual optimization
of the Lagrangian of the relaxed LP. The use of saddle-point optimization in MDPs was first proposed
by Wang & Chen [34] for planning in small state spaces, and was extended to linear function
approximation by Chen et al. [8], Bas-Serrano & Neu [1], and Neu & Okolo [26]. We largely take
inspiration from this latter work, which was the first to apply saddle-point optimization to the relaxed
LP. However, primal-dual planning algorithms assume oracle access to a transition model, whose
samples are used to estimate gradients. In our offline setting, we only assume access to i.i.d. samples
generated by a possibly unknown behavior policy. To adapt the primal-dual optimization strategy
to this setting we employ a change of variable, inspired by Nachum & Dai [24], which allows easy
computation of unbiased gradient estimates.

Notation. We denote vectors with bold letters, such as x .
= [x1, . . . , xd]

⊤ ∈ Rd, and use ei to
denote the i-th standard basis vector. We interchangeably denote functions f : X → R over a finite
set X , as vectors f ∈ R|X | with components f(x), and use ≥ to denote element-wise comparison. We
denote the set of probability distributions over a measurable set S as ∆S , and the probability simplex
in Rd as ∆d. We use σ : Rd → ∆d to denote the softmax function defined as σi(x)

.
= exi/

∑d
j=1 e

xj .

2

We use upper-case letters for random variables, such as S, and denote the uniform distribution over a
finite set of n elements as U(n). In the context of iterative algorithms, we use Ft−1 to denote the
sigma-algebra generated by all events up to the end of iteration t− 1, and use the shorthand notation
Et [·] = E [·| Ft−1] to denote expectation conditional on the history. For nested-loop algorithms, we
write Ft,i−1 for the sigma-algebra generated by all events up to the end of iteration i− 1 of round t,
and Et,i [·] = E [·| Ft,i−1] for the corresponding conditional expectation.

2 Preliminaries

We study discounted Markov decision processes [MDP, 29] denoted as (X ,A, p, r, γ), with discount
factor γ ∈ [0, 1] and finite, but potentially very large, state space X and action space A. For
every state-action pair (x, a), we denote as p(· | x, a) ∈ ∆X the next-state distribution, and as
r(x, a) ∈ [0, 1] the reward, which is assumed to be deterministic and bounded for simplicity. The
transition function p is also denoted as the matrix P ∈ R|X×A|×|X| and the reward as the vector
r ∈ R|X×A|. The objective is to find an optimal policy π∗ : X → ∆A. That is, a stationary
policy that maximizes the normalized expected return ρ(π∗)

.
= (1− γ)Eπ∗ [

∑∞
t=0 r(Xt, At)], where

the initial state X0 is sampled from the initial state distribution ν0, the other states according to
Xt+1 ∼ p(·|Xt, At) and where the notation Eπ[·] is used to denote that the actions are sampled
from policy π as At ∼ π(·|Xt). Moreover, we define the following quantities for each policy π: its
state-action value function qπ(x, a) .= Eπ[

∑∞
t=0 γ

tr(Xt, At) |X0 = x,A0 = a], its value function
vπ(x)

.
= Eπ[q

π(x,A0)], its state occupancy measure νπ(x) .
= (1− γ)Eπ[

∑∞
t=0 1{Xt = x}], and

its state-action occupancy measure µπ(x, a)
.
= π(a|x)νπ(x). These quantities are known to satisify

the following useful relations, more commonly known respectively as Bellman’s equation and flow
constraint for policy π [4]:

qπ = r + γPvπ νπ = (1− γ)ν0 + γP Tµπ (1)

Given this notation, we can also rewrite the normalized expected return in vector form as ρ(π) =
(1− γ)⟨ν0,vπ⟩ or equivalently as ρ(π) = ⟨r,µπ⟩.
Our work is based on the linear programming formulation due to Manne [19] (see also 29) which
transforms the reinforcement learning problem into the search for an optimal state-action occupancy
measure, obtained by solving the following Linear Program (LP):

maximize ⟨r,µ⟩
subject to ETµ = (1− γ)ν0 + γP Tµ

µ ≥ 0

(2)

whereE ∈ R|X×A|×|X| denotes the matrix with componentsE(x,a),x′
.
= 1{x = x′}. The constraints

of this LP are known to characterize the set of valid state-action occupancy measures. Therefore,
an optimal solution µ∗ of the LP corresponds to the state-action occupancy measure associated to a
policy π∗ maximizing the expected return, and which is therefore optimal in the MDP. This policy
can be extracted as π∗(a|x) .

= µ∗(x, a)/
∑

ā∈A µ
∗(x, ā). However, this linear program cannot be

directly solved in an efficient way in large MDPs due to the number of constraints and dimensions
of the variables scaling with the size of the state space X . Therefore, taking inspiration from the
previous works of Bas-Serrano et al. [2], Neu & Okolo [26] we assume the knowledge of a feature
map φ, which we then use to reduce the dimension of the problem. More specifically we consider the
setting of Linear MDPs [13, 37].
Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions
can be expressed as a linear function of a given feature map φ : X ×A → Rd. That is, there exist
ψ : X → Rd and ω ∈ Rd such that, for every x, x′ ∈ X and a ∈ A:

r(x, a) = ⟨φ(x, a),ω⟩, p(x′ | x, a) = ⟨φ(x, a),ψ(x′)⟩.
We assume that for all x, a, the norms of all relevant vectors are bounded by known constants as
∥φ(x, a)∥2 ≤ Dφ, ∥

∑
x′ ψ(x′)∥2 ≤ Dψ , and ∥ω∥2 ≤ Dω . Moreover, we represent the feature map

with the matrix Φ ∈ R|X×A|×d with rows given by φ(x, a)T, and similarly we define Ψ ∈ Rd×|X|

as the matrix with columns given by ψ(x).

With this notation we can rewrite the transition matrix as P = ΦΨ. Furthermore, it is convenient
to assume that the dimension d of the feature map cannot be trivially reduced, and therefore that

3

the matrix Φ is full-rank. An easily verifiable consequence of the Linear MDP assumption is that
state-action value functions can be represented as a linear combinations of φ. That is, there exist
θπ ∈ Rd such that:

qπ = r + γPvπ = Φ(ω +Ψvπ) = Φθπ. (3)

It can be shown that for all policies π, the norm of θπ is at most Dθ = Dω +
Dψ
1−γ (cf. Lemma B.1

in 13). We then translate the linear program (2) to our setting, with the addition of the new variable
λ ∈ Rd, resulting in the following new LP and its corresponding dual:

maximize ⟨ω,λ⟩
subject to ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ

µ ≥ 0.

(4)

minimize (1− γ)⟨ν0,v⟩
subject to θ = ω + γΨv

Ev ≥ Φθ
(5)

It can be immediately noticed how the introduction of λ did not change neither the set of admissible
µs nor the objective, and therefore did not alter the optimal solution. The Lagrangian associated to
this set of linear programs is the function:

L(v,θ,λ,µ) = (1− γ)⟨ν0,v⟩+ ⟨λ,ω + γΨv − θ⟩+ ⟨µ,Φθ −Ev⟩
= ⟨λ,ω⟩+ ⟨v, (1− γ)ν0 + γΨTλ−ETµ⟩+ ⟨θ,ΦTµ− λ⟩. (6)

It is known that finding optimal solutions (λ⋆,µ⋆) and (v⋆,θ⋆) for the primal and dual LPs is
equivalent to finding a saddle point (v⋆,θ⋆,λ⋆,µ⋆) of the Lagrangian function [5]. In the next
section, we will develop primal-dual methods that aim to find approximate solutions to the above
saddle-point problem, and convert these solutions to policies with near-optimality guarantees.

3 Algorithm and Main Results

This section introduces the concrete setting we study in this paper, and presents our main contributions.

We consider the offline-learning scenario where the agent has access to a dataset D = (Wt)
n
t=1,

collected by a behavior policy πB , and composed of n random observations of the form Wt =
(X0

t , Xt, At, Rt, X
′
t). The random variables X0

t , (Xt, At) and X ′
t are sampled, respectively, from

the initial-state distribution ν0, the discounted occupancy measure of the behavior policy, denoted as
µB , and from p(· |Xt, At). Finally,Rt denotes the reward r(Xt, At). We assume that all observations
Wt are generated independently of each other, and will often use the notation φt = φ(Xt, At).

Our strategy consists in finding approximately good solutions for the LPs (4) and (5) using stochastic
optimization methods, which require access to unbiased gradient estimates of the Lagrangian (Equa-
tion 6). The main challenge we need to overcome is constructing suitable estimators based only on
observations drawn from the behavior policy. We address this challenge by introducing the matrix
Λ = EX,A∼µB

[φ(X,A)φ(X,A)T] (supposed to be invertible for the sake of argument for now),
and rewriting the gradient with respect to λ as

∇λL(λ,µ;v,θ) = ω + γΨv − θ = Λ−1Λ (ω + γΨv − θ)
= Λ−1E [φ(Xt, At)φ(Xt, At)

T (ω + γΨv − θ)]
= Λ−1E [φ(Xt, At) (Rt + γv(X ′

t)− ⟨θ,φ(Xt, At)⟩)] .

This suggests that the vector within the expectation can be used to build an unbiased estimator of the
desired gradient. A downside of using this estimator is that it requires knowledge of Λ. However,
this can be sidestepped by a reparametrization trick inspired by Nachum & Dai [24]: introducing the
parametrization β = Λ−1λ, the objective can be rewritten as

L(β,µ;v,θ) = (1− γ)⟨ν0,v⟩+ ⟨β,Λ
(
ω + γΨv − θ

)
⟩+ ⟨µ,Φθ −Ev⟩.

This can be indeed seen to generalize the tabular reparametrization of Nachum & Dai [24] to the case
of linear function approximation. Notably, our linear reparametrization does not change the structure
of the saddle-point problem, but allows building an unbiased estimator of ∇βL(β,µ;v,θ) without
knowledge of Λ as

g̃β = φ(Xt, At) (Rt + γv(X ′
t)− ⟨θ,φ(Xt, At)⟩) .

4

In what follows, we will use the more general parametrization β = Λ−cλ, with c ∈ {1/2, 1}, and
construct a primal-dual stochastic optimization method that can be implemented efficiently in the
offline setting based on the observations above. Using c = 1 allows to run our algorithm without
knowledge of Λ, that is, without knowing the behavior policy that generated the dataset, while using
c = 1/2 results in a tighter bound, at the price of having to assume knowledge of Λ.

Our algorithm (presented as Algorithm 1) is inspired by the method of Neu & Okolo [26], originally
designed for planning with a generative model. The algorithm has a double-loop structure, where
at each iteration t we run one step of stochastic gradient ascent for β, and also an inner loop
which runs K iterations of stochastic gradient descent on θ making sure that ⟨φ(x, a),θt⟩ is a
good approximation of the true action-value function of πt. Iterations of the inner loop are indexed
by k. The main idea of the algorithm is to compute the unbiased estimators g̃θ,t,k and g̃β,t of
the gradients ∇θL(βt,µt; ·,θt,k) and ∇βL(βt, ·;vt,θt), and use them to update the respective
variables iteratively. We then define a softmax policy πt at each iteration t using the θ parameters as
πt(a|x) = σ

(
α
∑t−1

i=1⟨φ(x, a),θi⟩
)

. The other higher-dimensional variables (µt,vt) are defined
symbolically in terms of βt, θt and πt, and used only as auxiliary variables for computing the
estimates g̃θ,t,k and g̃β,t. Specifically, we set these variables as

vt(x) =
∑
a

πt(a|x)⟨φ(x, a),θt⟩, (7)

µt,k(x, a) = πt(a|x)
(
(1− γ)1{X0

t,k = x}+ γ⟨φt,k,Λ
c−1βt⟩1{X ′

t,k = x}
)
. (8)

Finally, the gradient estimates can be defined as

g̃β,t = Λc−1φt (Rt + γvt(X
′
t)− ⟨φt,θt⟩) , (9)

g̃θ,t,k = ΦTµt,k −Λc−1φt,k⟨φt,k,βt⟩. (10)

These gradient estimates are then used in a projected gradient ascent/descent scheme, with the ℓ2
projection operator denoted by Π. The feasible sets of the two parameter vectors are chosen as ℓ2
balls of radii Dθ and Dβ , denoted respectively as B(Dθ) and B(Dβ). Notably, the algorithm does not
need to compute vt(x), µt,k(x, a), or πt(a|x) for all states x, but only for the states that are accessed
during the execution of the method. In particular, πt does not need to be computed explicitly, and it
can be efficiently represented by the single d-dimensional parameter vector

∑t
i=1 θi.

Due to the double-loop structure, each iteration t uses K samples from the dataset D, adding up to
a total of n = KT samples over the course of T iterations. Each gradient update calculated by the
method uses a constant number of elementary vector operations, resulting in a total computational
complexity of O(|A|dn) elementary operations. At the end, our algorithm outputs a policy selected
uniformly at random from the T iterations.

3.1 Main result

We are now almost ready to state our main result. Before doing so, we first need to discuss the
quantities appearing in the guarantee, and provide an intuitive explanation for them.

Similarly to previous work, we capture the partial coverage assumption by expressing the rate of
convergence to the optimal policy in terms of a coverage ratio that measures the mismatch between
the behavior and the optimal policy. Several definitions of coverage ratio are surveyed by Uehara &
Sun [32]. In this work, we employ a notion of feature coverage ratio for linear MDPs that defines
coverage in feature space rather than in state-action space, similarly to Jin et al. [14], but with a
smaller ratio.
Definition 3.1. Let c ∈ {1/2, 1}. We define the generalized coverage ratio as

Cφ,c(π
∗;πB) = E(X∗,A∗)∼µπ∗ [φ(X∗, A∗)]⊤Λ−2cE[φ(X∗, A∗)].

We defer a detailed discussion of this ratio to Section 6, where we compare it with similar notions in
the literature. We are now ready to state our main result.
Theorem 3.2. Given a linear MDP (Definition 2.1) such that θπ ∈ B(Dθ) for any policy π. Assume
that the coverage ratio is bounded Cφ,c(π

∗;πB) ≤ Dβ. Then, for any comparator policy π∗, the
policy output by an appropriately tuned instance of Algorithm 1 satisfies E

[
⟨µπ∗ − µπout , r⟩

]
≤ ε

with a number of samples nϵ that is O
(
ε−4D4

θD
8c
φD

4
βd

2−2c log |A|
)

.

5

Algorithm 1 Offline Primal-Dual RL
Input: Learning rates α, ζ, η, initial points θ0 ∈ B(Dθ),β1 ∈ B(Dβ), π1, and data D = (Wt)

n
t=1

for t = 1 to T do
Initialize θt,1 = θt−1

for k = 1 to K − 1 do
Obtain sample Wt,k = (X0

t,k, Xt,k, At,k, X
′
t,k)

µt,k = πt ◦
[
(1− γ)eX0

t,k
+ γ⟨φ(Xt,k, At,k),Λ

c−1βt⟩eX′
t,k

]
g̃θ,t,i = ΦTµt,k − Λc−1φ(Xt,k, At,k)⟨φ(Xt,k, At,k),βt⟩
θt,k+1 = ΠB(Dθ)(θt,k − ηg̃θ,t,i) // Stochastic gradient descent

end for
θt =

1
K

∑K
k=1 θt,k

Obtain sample Wt = (X0
t , Xt, At, X

′
t)

vt = E
T
(
πt ◦Φθt

)
g̃β,t = φ(Xt, A)

(
Rt + γvt(X

′
t)− ⟨φ(Xt, At),θt⟩

)
βt+1 = ΠB(Dβ)(βt + ζg̃β,t) // Stochastic gradient ascent

πt+1 = σ(α
∑t

i=1 Φθi) // Policy update
end for
return πJ with J ∼ U(T).

The concrete parameter choices are detailed in the full version of the theorem in Appendix A. The
main theorem can be simplified by making some standard assumptions, formalized by the following
corollary.
Corollary 3.3. Assume that the bound of the feature vectors Dφ is of order O(1), that Dω = Dψ =√
d and that Dβ = c · Cφ,c(π

∗;πB) for some positive universal constant c. Then, under the same

assumptions of Theorem 3.2, nε is of order O
(

d4Cφ,c(π
∗;πB)2 log |A|

d2c(1−γ)4ε4

)
.

4 Analysis

This section explains the rationale behind some of the technical choices of our algorithm, and sketches
the proof of our main result.

First, we explicitly rewrite the expression of the Lagrangian (6), after performing the change of
variable λ = Λcβ:

L(β,µ;v,θ) = (1− γ)⟨ν0,v⟩+ ⟨β,Λc
(
ω + γΨv − θ

)
⟩+ ⟨µ,Φθ −Ev⟩ (11)

= ⟨β,Λcω⟩+ ⟨v, (1− γ)ν0 + γΨTΛcβ −ETµ⟩+ ⟨θ,ΦTµ−Λcβ⟩. (12)

We aim to find an approximate saddle-point of the above convex-concave objective function. One
challenge that we need to face is that the variables v and µ have dimension proportional to the size of
the state space |X |, so making explicit updates to these parameters would be prohibitively expensive
in MDPs with large state spaces. To address this challenge, we choose to parametrize µ in terms of a
policy π and β through the symbolic assignment µ = µβ,π , where

µβ,π(x, a)
.
= π(a|x)

[
(1− γ)ν0(x) + γ⟨ψ(x),Λcβ⟩

]
. (13)

This choice can be seen to satisfy the first constraint of the primal LP (4), and thus the gradient of the
Lagrangian (12) evaluated at µβ,π with respect to v can be verified to be 0. This parametrization
makes it possible to express the Lagrangian as a function of only θ,β and π as

f(θ,β, π)
.
= L(β,µβ,π;v,θ) = ⟨β,Λcω⟩+ ⟨θ,ΦTµβ,π −Λcβ⟩. (14)

For convenience, we also define the quantities νβ = ETµβ,π and vθ,π(s)
.
=
∑

a π(a|s) ⟨θ,φ(x, a)⟩,
which enables us to rewrite f as

f(θ,β, π) = ⟨Λcβ,ω − θ⟩+ ⟨vθ,π,νβ⟩ = (1− γ)⟨ν0,vθ,π⟩+ ⟨Λcβ,ω + γΨvθ,π − θ⟩. (15)

6

The above choices allow us to perform stochastic gradient / ascent over the low-dimensional parame-
ters θ and β and the policy π. In order to calculate an unbiased estimator of the gradients, we first
observe that the choice of µt,k in Algorithm 1 is an unbiased estimator of µβt,πt :

Et,k [µt,k(x, a)] = πt(a|x)
(
(1− γ)P(X0

t,k = x) + Et,k

[
1{X ′

t,k = x}⟨φt,Λ
c−1βt⟩

])
= πt(a|x)

(
(1− γ)ν0(x) + γ

∑
x̄,ā

µB(x̄, ā)p(x|x̄, ā)φ(x̄, ā)TΛc−1βt

)
= πt(a|x)

(
(1− γ)ν0(x) + γψ(x)TΛΛc−1βt

)
= µβt,πt(x, a),

where we used the fact that p(x|x̄, ā) = ⟨ψ(x),φ(x̄, ā)⟩, and the definition of Λ. This in turn
facilitates proving that the gradient estimate g̃θ,t,k, defined in Equation 10, is indeed unbiased:

Et,k [g̃θ,t,k] = ΦTEt,k [µt,k]−Λc−1Et,k

[
φt,kφ

T

t,k

]
βt = ΦTµβt,πt −Λcβt = ∇θL(βt,µt;vt, ·).

A similar proof is used for g̃β,t and is detailed in Appendix B.3.

Our analysis is based on arguments by Neu & Okolo [26], carefully adapted to the reparametrized
version of the Lagrangian presented above. The proof studies the following central quantity that we
refer to as dynamic duality gap:

GT (β
∗, π∗;θ∗1:T)

.
=

1

T

T∑
t=1

(f(β∗, π∗;θt)− f(βt, πt;θ
∗
t)). (16)

Here, (θt,βt, πt) are the iterates of the algorithm, θ∗1:T = (θ∗t)
T
t=1 a sequence of comparators for θ,

and finally β∗ and π∗ are fixed comparators for β and π, respectively. Our first key lemma relates
the suboptimality of the output policy to GT for a specific choice of comparators.
Lemma 4.1. Let θ∗t

.
= θπt , π∗ be any policy, and β∗ = Λ−cΦ⊤µπ∗

. Then, E
[
⟨µπ∗ − µπout , r⟩

]
=

GT

(
β∗, π∗;θ∗1:T

)
.

The proof is relegated to Appendix B.1. Our second key lemma rewrites the gap GT for any choice of
comparators as the sum of three regret terms:
Lemma 4.2. With the choice of comparators of Lemma 4.1

GT (β
∗, π∗;θ∗1:T) =

1

T

T∑
t=1

⟨θt − θ∗t , gθ,t⟩+
1

T

T∑
t=1

⟨β∗ − βt, gβ,t⟩

+
1

T

T∑
t=1

∑
s

νπ
∗
(s)
∑
a

(π∗(a|s)− πt(a|s))⟨θt,φ(x, a)⟩,

where gθ,t = Φ⊤µβt,πt −Λcβt and gβ,t = Λc(ω + γΨvθt,πt − θt).

The proof is presented in Appendix B.2. To conclude the proof we bound the three terms appearing
in Lemma 4.2. The first two of those are bounded using standard gradient descent/ascent analysis
(Lemmas B.1 and B.2), while for the latter we use mirror descent analysis (Lemma B.3). The details
of these steps are reported in Appendix B.3.

5 Extension to Average-Reward MDPs

In this section, we briefly explain how to extend our approach to offline learning in average reward
MDPs, establishing the first sample complexity result for this setting. After introducing the setup, we
outline a remarkably simple adaptation of our algorithm along with its performance guarantees for
this setting. The reader is referred to Appendix C for the full details, and to Chapter 8 of Puterman
[29] for a more thorough discussion of average-reward MDPs.

In the average reward setting we aim to optimize the objective ρπ(x) =

lim infT→∞
1
T Eπ

[∑T
t=1 r(xt, at)

∣∣ x1 = x
]
, representing the long-term average reward of

policy π when started from state x ∈ X . Unlike the discounted setting, the average reward criterion
prioritizes long-term frequency over proximity of good rewards due to the absence of discounting

7

which expresses a preference for earlier rewards. As is standard in the related literature, we will
assume that ρπ is well-defined for any policy and is independent of the start state, and thus will
use the same notation to represent the scalar average reward of policy π. Due to the boundedness
of the rewards, we clearly have ρπ ∈ [0, 1]. Similarly to the discounted setting, it is possible
to define quantities analogous to the value and action value functions as the solutions to the
Bellman equations qπ = r − ρπ1 + Pvπ, where vπ is related to the action-value function as
vπ(x) =

∑
a π(a|x)qπ(x, a). We will make the following standard assumption about the MDP (see,

e.g., Section 17.4 of Meyn & Tweedie [22]):
Assumption 5.1. For all stationary policies π, the Bellman equations have a solution qπ satisfying
supx,a q

π(x, a)− infx,a q
π(x, a) < Dq .

Furthermore, we will continue to work with the linear MDP assumption of Definition 2.1, and will
additionally make the following minor assumption:
Assumption 5.2. The all ones vector 1 is contained in the column span of the feature matrix Φ.
Furthermore, let ϱ ∈ Rd such that for all (x, a) ∈ Z , ⟨φ(x, a),ϱ⟩ = 1.

Using these insights, it is straightforward to derive a linear program akin to (2) that characterize the
optimal occupancy measure and thus an optimal policy in average-reward MDPs. Starting from this
formulation and proceeding as in Sections 2 and 4, we equivalently restate this optimization problem
as finding the saddle-point of the reparametrized Lagrangian defined as follows:

L(β,µ; ρ,v,θ) = ρ+ ⟨β ,Λc[ω +Ψv − θ − ρϱ]⟩+ ⟨µ ,Φθ −Ev⟩.
As previously, the saddle point can be shown to be equivalent to an optimal occupancy measure under
the assumption that the MDP is linear in the sense of Definition 2.1. Notice that the above Lagrangian
slightly differs from that of the discounted setting in Equation (11) due to the additional optimization
parameter ρ, but otherwise our main algorithm can be directly generalized to this objective. We
present details of the derivations and the resulting algorithm in Appendix C. The following theorem
states the performance guarantees for this method.
Theorem 5.3. Given a linear MDP (Definition 2.1) satisfying Assumption 5.2 and such that θπ ∈
B(Dθ) for any policy π. Assume that the coverage ratio is bounded Cφ,c(π

∗;πB) ≤ Dβ. Then, for
any comparator policy π∗, the policy output by an appropriately tuned instance of Algorithm 2 satisfies
E
[
⟨µπ∗ − µπout , r⟩

]
≤ ε with a number of samples nϵ that is O

(
ε−4D4

θD
12c−2
φ D4

βd
2−2c log |A|

)
.

As compared to the discounted case, this additional dependence of the sample complexity on Dφ is
due to the extra optimization variable ρ. We provide the full proof of this theorem along with further
discussion in Appendix C.

6 Discussion and Final Remarks

In this section, we compare our results with the most relevant ones from the literature. Our Table 1 can
be used as a reference. As a complement to this section, we refer the interested reader to the recent
work by Uehara & Sun [32], which provides a survey of offline RL methods with their coverage and
structural assumptions. Detailed computations can be found in Appendix E.

An important property of our method is that it only requires partial coverage. This sets it apart from
classic batch RL methods like FQI [11, 23], which require a stronger uniform-coverage assumption.
Algorithms working under partial coverage are mostly based on the principle of pessimism. However,
our algorithm does not implement any form of explicit pessimism. We recall that, as shown by Xiao
et al. [35], pessimism is just one of many ways to achieve minimax-optimal sample efficiency.

Let us now compare our notion of coverage ratio to the existing notions previsouly used in the
literature. Jin et al. [14] (Theorem 4.4) rely on a feature coverage ratio which can be written as

C⋄(π∗;πB) = EX,A∼µ∗
[
φ(X,A)TΛ−1φ(X,A)

]
. (17)

By Jensen’s inequality, our Cφ,1/2 (Definition 3.1) is never larger than C⋄. Indeed, notice how
the random features in Equation (17) are coupled, introducing an extra variance term w.r.t. Cφ,1/2.
Specifically, we can show that Cφ,1/2(π

∗;πB) = C⋄(π∗;πB)− VX,A∼µ∗
[
Λ−1/2φ(X,A)

]
, where

V [Z] = E[∥Z − E [Z]∥2] for a random vector Z. So, besides fine comparisons with existing notions
of coverage ratios, we can regard Cφ,1/2 as a low-variance version of the standard feature coverage

8

ratio. However, our sample complexity bounds do not fully take advantage of this low-variance
property, since they scale quadratically with the ratio itself, rather than linearly, as is more common
in previous work.

To scale with Cφ,1/2, our algorithm requires knowledge of Λ, hence of the behavior policy. However,
so does the algorithm from Jin et al. [14]. Zanette et al. [38] remove this requirement at the price of a
computationally heavier algorithm. However, both are limited to the finite-horizon setting.

Uehara & Sun [32] and Zhang et al. [39] use a coverage ratio that is conceptually similar to Equa-
tion (17),

C†(π∗;πB) = sup
y∈Rd

yTEX,A∼µ∗ [φ(X,A)φ(X,A)T] y

yTEX,A∼µB
[φ(X,A)φ(X,A)T] y

. (18)

Some linear algebra shows that C† ≤ C⋄ ≤ dC†. Therefore, chaining the previous inequalities
we know that Cφ,1/2 ≤ C⋄ ≤ dC†. It should be noted that the algorithm from Uehara & Sun [32]
also works in the representation-learning setting, that is, with unknown features. However, it is far
from being efficiently implementable. The algorithm from Zhang et al. [39] instead is limited to the
finite-horizon setting.

In the special case of tabular MDPs, it is hard to compare our ratio with existing ones, because in
this setting, error bounds are commonly stated in terms of supx,a µ∗(x,a)/µB(x,a), often introducing
an explicit dependency on the number of states [e.g., 17], which is something we carefully avoided.
However, looking at how the coverage ratio specializes to the tabular setting can still provide
some insight. With known behavior policy, Cφ,1/2(π

∗;πB) =
∑

x,a
µ∗(x,a)2/µB(x,a) is smaller than

the more standard C⋄(π∗;πB) =
∑

x,a
µ∗(x,a)/µB(x,a). With unknown behavior, Cφ,1(π

∗;πB) =∑
x,a(µ

∗(x,a)/µB(x,a))2 is non-comparable with C⋄ in general, but larger than Cφ,1/2. Interestingly,
Cφ,1(π

∗;πB) is also equal to 1+X 2(µ∗∥µB), where X 2 denotes the chi-square divergence, a crucial
quantity in off-distribution learning based on importance sampling [10]. Moreover, a similar quantity
to Cφ,1 was used by Lykouris et al. [18] in the context of (online) RL with adversarial corruptions.

We now turn to the works of Xie et al. [36] and Cheng et al. [9], which are the only practical
methods to consider function approximation in the infinite horizon setting, with minimal assumption
on the dataset, and thus the only directly comparable to our work. They both use the coverage
ratio CF (π

∗;πB) = maxf∈F ∥f−T f∥2
µ∗/∥f−T f∥2

µB
, where F is a function class and T is Bellman’s

operator. This can be shown to reduce to Equation (18) for linear MDPs. However, the specialized
bound of Xie et al. [36] (Theorem 3.2) scales with the potentially larger ratio from Equation (17).
Both their algorithms have superlinear computational complexity and a sample complexity ofO(ε−5).
Hence, in the linear MDP setting, our algorithm is a strict improvement both for its O(ε−4) sample
complexity and its O(n) computational complexity. However, It is very important to notice that no
practical algorithm for this setting so far, including ours, can match the minimax optimal sample
complexity rate of O(ε2) [35, 31]. This leaves space for future work in this area. In particular, by
inspecting our proofs, it should be clear the the extra O(ε−2) factor is due to the nested-loop structure
of the algorithm. Therefore, we find it likely that our result can be improved using optimistic descent
methods [6] or a two-timescale approach [15, 30].

As a final remark, we remind that when Λ is unknown, our error bounds scales with Cφ,1, instead of
the smaller Cφ,1/2. However, we find it plausible that one can replace the Λ with an estimate that is
built using some fraction of the overall sample budget. In particular, in the tabular case, we could
simply use all data to estimate the visitation probabilities of each-state action pairs and use them to
build an estimator of Λ. Details of a similar approach have been worked out by Gabbianelli et al.
[12]. Nonetheless, we designed our algorithm to be flexible and work in both cases.

To summarize, our method is one of the few not to assume the state space to be finite, or the dataset
to have global coverage, while also being computationally feasible. Moreover, it offers a significant
advantage, both in terms of sample and computational complexity, over the two existing polynomial-
time algorithms for discounted linear MDPs with partial coverage [36, 9]; it extends to the challenging
average-reward setting with minor modifications; and has error bounds that scale with a low-variance
version of the typical coverage ratio. These results were made possible by employing algorithmic
principles, based on the linear programming formulation of sequential decision making, that are new
in offline RL. Finally, the main direction for future work is to develop a single-loop algorithm to
achieve the optimal rate of ε−2, which should also improve the dependence on the coverage ratio
from Cφ,c(π

∗;πB)
2 to Cφ,c(π

∗;πB).

9

References
[1] Bas-Serrano, J. and Neu, G. Faster saddle-point optimization for solving large-scale markov

decision processes. In L4DC, volume 120 of Proceedings of Machine Learning Research, pp.
413–423. PMLR, 2020.

[2] Bas-Serrano, J., Curi, S., Krause, A., and Neu, G. Logistic q-learning. In Banerjee, A. and Fuku-
mizu, K. (eds.), Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learning Research, pp. 3610–3618. PMLR,
13–15 Apr 2021. URL https://proceedings.mlr.press/v130/bas-serrano21a.html.

[3] Bellman, R. Dynamic programming. Technical report, RAND CORP SANTA MONICA CA,
1956.

[4] Bellman, R. Dynamic programming. Science, 153(3731):34–37, 1966.

[5] Bertsekas, D. P. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
1982. ISBN 978-0-12-093480-5.

[6] Borkar, V. S. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

[7] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University
Press, New York, NY, USA, 2006.

[8] Chen, Y., Li, L., and Wang, M. Scalable bilinear learning using state and action features. In
ICML, volume 80 of Proceedings of Machine Learning Research, pp. 833–842. PMLR, 2018.

[9] Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. Adversarially trained actor critic for offline
reinforcement learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and
Sabato, S. (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 3852–3878. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/cheng22b.html.

[10] Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In NeurIPS,
pp. 442–450. Curran Associates, Inc., 2010.

[11] Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. J. Mach.
Learn. Res., 6:503–556, 2005.

[12] Gabbianelli, G., Neu, G., and Papini, M. Online learning with off-policy feedback. In Agrawal,
S. and Orabona, F. (eds.), ALT, volume 201 of Proceedings of Machine Learning Research,
pp. 620–641. PMLR, 20 Feb–23 Feb 2023. URL https://proceedings.mlr.press/v201/
gabbianelli23a.html.

[13] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably efficient reinforcement learning with
linear function approximation. In COLT, volume 125 of Proceedings of Machine Learning
Research, pp. 2137–2143. PMLR, 2020.

[14] Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? In International
Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

[15] Korpelevich, G. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

[16] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. 2020.

[17] Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. Provably good batch off-policy
reinforcement learning without great exploration. In NeurIPS, 2020.

[18] Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W. Corruption-robust exploration in
episodic reinforcement learning. In COLT, volume 134 of Proceedings of Machine Learning
Research, pp. 3242–3245. PMLR, 2021.

[19] Manne, A. S. Linear programming and sequential decisions. Manage. Sci., 6(3):259–267,
apr 1960. ISSN 0025-1909. doi: 10.1287/mnsc.6.3.259. URL https://doi.org/10.1287/
mnsc.6.3.259.

[20] Manne, A. S. Linear programming and sequential decisions. Management Science, 6(3):
259–267, 1960.

10

https://proceedings.mlr.press/v130/bas-serrano21a.html
https://proceedings.mlr.press/v162/cheng22b.html
https://proceedings.mlr.press/v201/gabbianelli23a.html
https://proceedings.mlr.press/v201/gabbianelli23a.html
https://doi.org/10.1287/mnsc.6.3.259
https://doi.org/10.1287/mnsc.6.3.259

[21] Mehta, P. G. and Meyn, S. P. Q-learning and pontryagin’s minimum principle. In CDC, pp.
3598–3605. IEEE, 2009.

[22] Meyn, S. and Tweedie, R. Markov Chains and Stochastic Stability. Springer-Verlag, 1996.
[23] Munos, R. and Szepesvári, C. Finite-time bounds for fitted value iteration. J. Mach. Learn.

Res., 9:815–857, 2008.
[24] Nachum, O. and Dai, B. Reinforcement learning via fenchel-rockafellar duality. 2020.
[25] Nemirovski, A. and Yudin, D. Problem Complexity and Method Efficiency in Optimization.

Wiley Interscience, 1983.
[26] Neu, G. and Okolo, N. Efficient global planning in large mdps via stochastic primal-dual

optimization. In ALT, volume 201 of Proceedings of Machine Learning Research, pp. 1101–
1123. PMLR, 2023.

[27] Neu, G., Jonsson, A., and Gómez, V. A unified view of entropy-regularized Markov decision
processes. arXiv preprint arXiv:1705.07798, 2017.

[28] Orabona, F. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.
[29] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., USA, 1994. ISBN 0471619779.
[30] Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences.

In Advances in Neural Information Processing Systems, pp. 3066–3074, 2013.
[31] Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. Bridging offline reinforcement learning

and imitation learning: A tale of pessimism. IEEE Trans. Inf. Theory, 68(12):8156–8196, 2022.
[32] Uehara, M. and Sun, W. Pessimistic model-based offline reinforcement learning under partial

coverage. In ICLR. OpenReview.net, 2022.
[33] Uehara, M., Huang, J., and Jiang, N. Minimax weight and q-function learning for off-policy

evaluation. In III, H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9659–
9668. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/uehara20a.
html.

[34] Wang, M. and Chen, Y. An online primal-dual method for discounted markov decision processes.
In CDC, pp. 4516–4521. IEEE, 2016.

[35] Xiao, C., Wu, Y., Mei, J., Dai, B., Lattimore, T., Li, L., Szepesvári, C., and Schuurmans, D. On
the optimality of batch policy optimization algorithms. In ICML, volume 139 of Proceedings of
Machine Learning Research, pp. 11362–11371. PMLR, 2021.

[36] Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. Bellman-consistent pessimism
for offline reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 6683–6694. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf.

[37] Yang, L. and Wang, M. Sample-optimal parametric q-learning using linearly additive features.
In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 6995–7004. PMLR,
2019.

[38] Zanette, A., Wainwright, M. J., and Brunskill, E. Provable benefits of actor-critic methods for
offline reinforcement learning. In NeurIPS, pp. 13626–13640, 2021.

[39] Zhang, X., Chen, Y., Zhu, X., and Sun, W. Corruption-robust offline reinforcement learning. In
AISTATS, volume 151 of Proceedings of Machine Learning Research, pp. 5757–5773. PMLR,
2022.

[40] Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on Machine Learning (ICML), 2003.

11

https://proceedings.mlr.press/v119/uehara20a.html
https://proceedings.mlr.press/v119/uehara20a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf

Supplementary Material

A Complete statement of Theorem 3.2

Theorem A.1. Consider a linear MDP (Definition 2.1) such that θπ ∈ B(Dθ) for all π ∈ Π. Further,
suppose that Cφ,c(π

∗;πB) ≤ Dβ. Then, for any comparator policy π∗ ∈ Π, the policy output by
Algorithm 1 satisfies:

E
[
⟨µπ∗

− µπout , r⟩
]
≤

2D2
β

ζT
+

log |A|
αT

+
2D2

θ

ηK
+
ζG2

β,c

2
+
αD2

θD
2
φ

2
+
ηG2

θ,c

2
,

where:

G2
θ,c = 3D2

φ

(
(1− γ)2 + (1 + γ2)D2

β ∥Λ∥2c−1
2

)
, (19)

G2
β,c = 3(1 + (1 + γ2)D2

φD
2
θ)D

2(2c−1)
φ . (20)

In particular, using learning rates η = 2Dθ
Gθ,c

√
K

, ζ =
2Dβ

Gβ,c

√
T

, and α =

√
2 log |A|

DφDθ
√
T

, and setting

K = T · 2Dβ2G
2
β,c+D2

θD
2
φ log |A|

2D2
θG

2
θ,c

, we achieve E
[
⟨µπ∗ − µπout , r⟩

]
≤ ϵ with a number of samples nϵ

that is
O
(
ϵ−4D4

θD
4
φD

4
β Tr(Λ

2c−1) ∥Λ∥2c−1
2 log |A|

)
.

By remark A.2 below, we have that nϵ is simply of order O
(
ε−4D4

θD
8c
φD

4
βd

2−2c log |A|
)

Remark A.2. When c = 1/2, the factor Tr(Λ2c−1) is just d, the feature dimension, and ∥Λ∥2c−1
2 = 1.

When c = 1 and Λ is unknown, both ∥Λ∥2 and Tr(Λ) should be replaced by their upper bound D2
φ.

Then, for c ∈ {1/2, 1}, we have that Tr(Λ2c−1) ∥Λ∥2c−1
2 ≤ D8c−4

φ d2−2c.

12

B Missing Proofs for the Discounted Setting

B.1 Proof of Lemma 4.1

Using the choice of comparators described in the lemma, we have

νβ∗(s) = (1− γ)ν0(s) + γ⟨ψ(s),ΛcΛ−cΦ⊤µπ∗
⟩

= (1− γ)ν0(s) +
∑
s′,a′

P (s|s′, a′)µπ∗
(s′, a′) = νπ

∗
(s),

hence µβ∗,π∗ = µπ∗
. From Equation (14) it is easy to see that

f(β∗, π∗;θt) = ⟨Λ−cΦ⊤µ∗,Λcω⟩+ ⟨θt,Φ⊤µ∗ −ΛcΛ−cΦ⊤µ∗⟩
= ⟨µπ∗

,Φω⟩ = ⟨µ∗, r⟩.
Moreover, we also have

vθ∗
t ,πt

(s) =
∑
a

πt(a|s)⟨θπt ,φ(x, a)⟩

=
∑
a

πt(a|s)qπt(s, a) = vπt(s, a).

Then, from Equation (15) we obtain

f(θ∗t ,βt, πt)

= (1− γ)⟨ν0, vπt⟩+ ⟨βt,Λ
c(ω + γΨvπt − θπt)⟩

= (1− γ)⟨ν0, vπt⟩+ ⟨βt,Λ
c−1EX,A∼µB

[φ(X,A)φ(X,A)T(ω + γΨvπt − θπt)]⟩
= (1− γ)⟨ν0, vπt⟩+ ⟨βt,Λ

c−1EX,A∼µB
[[r(X,A) + γ ⟨p(·|X,A),vπt⟩ − qπt(X,A)]φ(X,A)]⟩

= (1− γ)⟨ν0, vπt⟩ = ⟨µπt , r⟩,
where the fourth equality uses that the value functions satisfy the Bellman equation qπ = r + γPvπ

for any policy π. The proof is concluded by noticing that, since πout is sampled uniformly from
{πt}Tt=1, E [⟨µπout , r⟩] = 1

T

∑T
t=1 E [⟨µπt , r⟩].

B.2 Proof of Lemma 4.2

We start by rewriting the terms appearing in the definition of GT :

f(β∗, π∗;θt)− f(βt, πt;θ
∗
t) = f(β∗, π∗;θt)− f(β∗, πt;θt)

+ f(β∗, πt;θt)− f(βt, πt;θt)

+ f(βt, πt;θt)− f(βt, πt;θ
∗
t). (21)

To rewrite this as the sum of the three regret terms, we first note that

f(β, π;θ) = ⟨Λcβ,ω − θt⟩+ ⟨νβ, vθt,π⟩,
which allows us to write the first term of Equation (21) as

f(β∗, π∗;θt)− f(β∗, πt;θt) = ⟨Λc(β∗ − β∗),ω − θt⟩+ ⟨νβ∗ , vθt,π∗ − vθt,πt⟩

= ⟨νβ∗ ,
∑
a

(π∗(a|·)− πt(a|·))⟨θt,φ(·, a)⟩⟩,

and we have already established in the proof of Lemma C.3 that νβ∗ is equal to νπ∗
for our choice of

comparator. Similarly, we use Equation (15) to rewrite the second term of Equation (21) as

f(β∗, πt;θt)− f(βt, πt;θt) = (1− γ)⟨ν0, vθt,πt − vθt,πt⟩+ ⟨β∗ − βt,Λ
c(ω + γΨvθt,πt − θt)⟩

= ⟨β∗ − βt, gβ,t⟩.
Finally, we use Equation (14) to rewrite the third term of Equation (21) as

f(βt, πt;θt)− f(βt, πt;θ
∗
t) = ⟨βt − βt,Λ

cω⟩+ ⟨θt − θ∗t ,Φ⊤µβt,πt
−Λcβt⟩

= ⟨θt − θ∗t , gθ,t⟩.

13

B.3 Regret bounds for stochastic gradient descent / ascent

Lemma B.1. For any dynamic comparator θ1:T ∈ Dθ , the iterates θ1, . . . ,θT of Algorithm 1 satisfy
the following regret bound:

E

[
T∑

t=1

⟨θt − θ∗t , gθ,t⟩

]
≤ 2TD2

θ

ηK
+

3ηTD2
φ

(
(1− γ)2 + (1 + γ2)D2

β ∥Λ∥2c−1
2

)
2

.

Proof. First, we use the definition of θt as the average of the inner-loop iterates from Algorithm 1,
together with linearity of expectation and bilinearity of the inner product.

E

[
T∑

t=1

⟨θt − θ∗t , gθ,t⟩

]
=

T∑
t=1

1

K
E

[
K∑

k=1

⟨θt,k − θ∗t , gθ,t⟩

]
︸ ︷︷ ︸

Rt

. (22)

We then appeal to standard stochastic gradient descent analysis to bound each term Rt separately.

We have already proven in Section 4 that the gradient estimator for θ is unbiased, that is,
Et,k [g̃θ,t,k] = gθ,t. It is also useful to recall here that g̃θ,t,k does not depend on θt,k. Next,
we show that its second moment is bounded. From Equation (10), plugging in the definition of µt,k

from Equation (8) and using the abbreviations φ0
t,k =

∑
a πt(a|x0t,k)φ(x0t,k, a), φt = φ(xt,k, at,k),

and φ′
t,k =

∑
a πt(a|x0t,k)φ(x′t,k, a), we have:

Et,k

[
∥g̃θ,t,i∥2

]
= Et,k

[∥∥(1− γ)φ0
t,k + γφ′

t,k⟨φtk,Λ
c−1βt⟩ −φt,k⟨φtk,Λ

c−1βt⟩
∥∥2]

≤ 3(1− γ)2D2
φ + 3γ2Et,k

[∥∥φ′
t,k⟨φtk,Λ

c−1βt⟩
∥∥2]+ 3Et,k

[∥∥φt,k⟨φtk,Λ
c−1βt⟩

∥∥2]
≤ 3(1− γ)2D2

φ + 3(1 + γ2)D2
φEt,k

[
⟨φtk,Λ

c−1βt⟩2
]

= 3(1− γ)2D2
φ + 3(1 + γ2)D2

φβ
⊤
t Λ

c−1Et,k

[
φtkφ

⊤
tk

]
Λc−1βt

= 3(1− γ)2D2
φ + 3(1 + γ2)D2

φ ∥βt∥2Λ2c−1 .

We can then apply Lemma D.1 with the latter expression as G2, B(Dθ) as the domain, and η as the
learning rate, obtaining:

Et

[
K∑

k=1

⟨θt,k − θ∗t , gθ,t⟩

]
≤

∥θt,1 − θ∗t ∥
2
2

2η
+

3ηKD2
φ

(
(1− γ)2 + (1 + γ2) ∥βt∥2Λ2c−1

)
2

≤ 2D2
θ

η
+

3ηKD2
φ

(
(1− γ)2 + (1 + γ2) ∥βt∥2Λ2c−1

)
2

.

Plugging this into Equation (22) and bounding ∥βt∥2Λ2c−1 ≤ D2
β ∥Λ∥2c−1

2 , we obtain the final
result.

Lemma B.2. For any comparator β ∈ Dβ, the iterates β1, . . . ,βT of Algorithm 1 satisfy the
following regret bound:

E

[
T∑

t=1

⟨β∗ − βt, gβ,t⟩

]
≤

2D2
β

ζ
+

3ζT (1 + (1 + γ2)D2
φD

2
θ) Tr(Λ

2c−1)

2
.

14

Proof. We again employ stochastic gradient descent analysis. We first prove that the gradient
estimator for β is unbiased. Recalling the definition of g̃β,t from Equation (9),

E [g̃β,t|Ft−1,θt] = E
[
Λc−1φt (Rt + γvt(X

′
t)− ⟨φt,θt⟩) |Ft−1,θt

]
= Λc−1

(
Et

[
φtφ

⊤
t

]
ω + γEt [φtvt(X

′
t)]− Et

[
φtφ

⊤
t

]
θt
)

= Λc−1
(
Λω + γEt [φtvt(X

′
t)]−Λθt

)
= Λc−1

(
Λω + γEt [φtP (·|Xt, At)vt]−Λθt

)
= Λc−1

(
Λω + γEt

[
φtφ

⊤
t

]
Ψvt −Λθt

)
= Λc(ω + γΨvθt,πt − θt) = gβ,t,

recalling that vt = vθt,πt . Next, we bound its second moment. We use the fact that r ∈ [0, 1] and
∥vt∥∞ ≤ ∥Φθt∥∞ ≤ DφDθ to show that

E
[
∥g̃β,t∥22 |Ft−1,θt

]
= E

[∥∥Λc−1φt[Rt + γvt(X
′
t)− ⟨θt,φt⟩]

∥∥2
2
|Ft−1,θt

]
≤ 3(1 + (1 + γ2)D2

φD
2
θ)Et

[
φT

tΛ
2(c−1)φt

]
= 3(1 + (1 + γ2)D2

φD
2
θ)Et

[
Tr(Λ2(c−1)φtφ

T

t)
]

= 3(1 + (1 + γ2)D2
φD

2
θ) Tr(Λ

2c−1).

Thus, we can apply Lemma D.1 with the latter expression as G2, B(Dβ) as the domain, and ζ as the
learning rate.

Lemma B.3. The sequence of policies π1, . . . , πT of Algorithm 1 satisfies the following regret bound:

E

[
T∑

t=1

∑
x∈X

νπ
∗
(x)
∑
a

(π∗(a|x)− πt(a|x))⟨θt,φ(x, a)⟩

]
≤ log |A|

α
+
αTD2

φD
2
θ

2
.

Proof. We just apply mirror descent analysis, invoking Lemma D.2 with qt = Φθt, noting that
∥qt∥∞ ≤ DφDθ . The proof is concluded by trivially bounding the relative entropy as H (π∗∥π1) =
Ex∼νπ∗ [D (π(·|x)∥π1(·|x))] ≤ log |A|.

15

C Analysis for the Average-Reward MDP Setting

This section describes the adaptation of our contributions in the main body of the paper to average-
reward MDPs (AMDPs). In the offline reinforcement learning setting that we consider, we assume
access to a sequence of data points (Xt, At, Rt, X

′
t) in round t generated by a behaviour policy πB

whose occupancy measure is denoted as µB . Specifically, we will now draw i.i.d. samples from
the undiscounted occupancy measure as Xt, At ∼ µB , sample X ′

t ∼ p(·|Xt, At), and compute
immediate rewards asRt = r(Xt, At). For simplicity, we use the shorthand notationφt = φ(Xt, At)
to denote the feature vector drawn in round t, and define the matrix Λ = E

[
φ(Xt, At)φ(Xt, At)

⊤].
Before describing our contributions, some definitions are in order. An important central concept in
the theory of AMDPs is that of the relative value functions of policy π defined as

vπ(x) = lim
T→∞

Eπ

[
T∑

t=0

r(Xt, At)− ρπ

∣∣∣∣∣X0 = x

]
,

qπ(x, a) = lim
T→∞

Eπ

[
T∑

t=0

r(Xt, At)− ρπ

∣∣∣∣∣X0 = x,A0 = a

]
,

where we recalled the notation ρπ denoting the average reward of policy π from the main text. These
functions are sometimes also called the bias functions, and their intuitive role is to measure the total
amount of reward gathered by policy π before it hits its stationary distribution. For simplicity, we
will refer to these functions as value functions and action-value functions below.

By their recursive nature, these value functions are also characterized by the corresponding Bellman
equations recalled below for completeness

qπ = r − ρπ1+ Pvπ,

where vπ is related to the action-value function as vπ(x) =
∑

a π(a|x)qπ(x, a). We note that the
Bellman equations only characterize the value functions up to a constant offset. That is, for any
policy π, and constant c ∈ R, vπ + c1 and qπ + c1 also satisfy the Bellman equations. A key
quantity to measure the size of the value functions is the span seminorm defined for q ∈ RX×A

as ∥q∥sp = sup(x,a)∈X×A q(x, a) − inf(x,a)∈X×A q(x, a). Using this notation, the condition of
Assumption 5.1 can be simply stated as requiring ∥qπ∥sp ≤ Dq for all π.

Now, let π∗ denote an optimal policy with maximum average reward and introduce the shorthand
notations ρ∗ = ρπ

∗
,µ∗ = µπ∗

,ν∗ = νπ∗
,v∗ = vπ

∗
and q∗ = qπ

∗
. Under mild assumptions

on the MDP that we will clarify shortly, the following Bellman optimality equations are known to
characterize bias vectors corresponding to the optimal policy

q∗ = r − ρ∗1+ Pv∗,

where v∗ satisfies v∗(x) = maxa q
∗(x, a). Once again, shifting the solutions by a constant preserves

the optimality conditions. It is easy to see that such constant offsets do not influence greedy or
softmax policies extracted from the action value functions. Importantly, by a calculation analogous to
Equation (3), the action-value functions are exactly realizable under the linear MDP condition (see
Definition 2.1) and Assumption 5.2.

Besides the Bellman optimality equations stated above, optimal policies can be equivalently charac-
terized via the following linear program:

maximize ⟨µ, r⟩
subject to ETµ = P Tµ

⟨µ,1⟩ = 1

µ ≥ 0.

(23)

This can be seen as the generalization of the LP stated for discounted MDPs in the main text, with
the added complication that we need to make sure that the occupancy measures are normalized1 to 1.
By following the same steps as in the main text to relax the constraints and reparametrize the LP, one

1This is necessary because of the absence of ν0 in the LP, which would otherwise fix the scale of the solutions.

16

can show that solutions of the LP under the linear MDP assumption can be constructed by finding the
saddle point of the following Lagrangian:

L(λ,µ; ρ,v,θ) = ρ+ ⟨λ ,ω +Ψv − θ − ρϱ⟩+ ⟨u ,Φθ −Ev⟩
= ρ[1− ⟨λ,ϱ⟩] + ⟨θ,ΦTµ− λ⟩+ ⟨v,ΨTλ−ETµ⟩ .

As before, the optimal value functions q∗ and v∗ are optimal primal variables for the saddle-point
problem, as are all of their constant shifts. Thus, the existence of a solution with small span seminorm
implies the existence of a solution with small supremum norm.

Finally, applying the same reparametrization β = Λ−cλ as in the discounted setting, we arrive to the
following Lagrangian that forms the basis of our algorithm:

L(β,µ; ρ,v,θ) = ρ+ ⟨β ,Λc[ω +Ψv − θ − ρϱ]⟩+ ⟨µ ,Φθ −Ev⟩.

We will aim to find the saddle point of this function via primal-dual methods. As we have some
prior knowledge of the optimal solutions, we will restrict the search space of each optimization
variable to nicely chosen compact sets. For the β iterates, we consider the Euclidean ball domain
B(Dβ) = {β ∈ Rd | ∥β∥2 ≤ Dβ} with the bound Dβ > ∥ΦTµ∗∥Λ−2c . Since the average reward
of any policy is bounded in [0, 1], we naturally restrict the ρ iterates to this domain. Finally, keeping
in mind that Assumption 5.1 guarantees that ∥qπ∥sp ≤ Dq, we will also constrain the θ iterates
to an appropriate domain: B(Dθ) = {θ ∈ Rd | ∥θ∥2 ≤ Dθ}. We will assume that this domain
is large enough to represent all action-value functions, which implies that Dθ should scale at least
linearly with Dq . Indeed, we will suppose that the features are bounded as ∥φ(x, a)∥2 ≤ Dφ for all
(x, a) ∈ X × A so that our optimization algorithm only admits parametric q functions satisfying
∥q∥∞ ≤ DφDθ. Obviously, Dθ needs to be set large enough to ensure that it is possible at all to
represent q-functions with span Dq .

Thus, we aim to solve the following constrained optimization problem:

min
ρ∈[0,1],v∈RX ,θ∈B(Dθ)

max
β∈B(Dβ),µ∈RX×A

+

L(β,µ; ρ,v,θ).

As done in the main text, we eliminate the high-dimensional variables v and µ by committing to the
choices v = vθ,π and µ = µβ,π defined as

vθ,π(x) =
∑
a

π(a|x) ⟨θ,φ(x, a)⟩ ,

µβ,π(x, a) = π(a|x)⟨ψ(x),Λcβ⟩.

This makes it possible to express the Lagrangian in terms of only β, π, ρ and θ:

f(β, π; ρ,θ) = ρ+ ⟨β ,Λc[ω +Ψvθ,π − θ − ρϱ]⟩+ ⟨µβ,π ,Φθ −Evθ,π⟩
= ρ+ ⟨β ,Λc[ω +Ψvθ,π − θ − ρϱ]⟩

The remaining low-dimensional variables β, ρ,θ are then updated using stochastic gradient de-
scent/ascent. For this purpose it is useful to express the partial derivatives of the Lagrangian with
respect to said variables:

gβ = Λc[ω +Ψvθ,π − θ − ρϱ]

gρ = 1− ⟨β,Λcϱ⟩
gθ = ΦTµβ,π −Λcβ

C.1 Algorithm for average-reward MDPs

Our algorithm for the AMDP setting has the same double-loop structure as the one for the discounted
setting. In particular, the algorithm performs a sequence of outer updates t = 1, 2, . . . , T on the
policies πt and the iterates βt, and then performs a sequence of updates i = 1, 2, . . . ,K in the
inner loop to evaluate the policies and produce θt, ρt and vt. Thanks to the reparametrization
β = Λ−cλ, fixing πt = softmax(

∑t−1
k=1 Φθk), vt(x) =

∑
a∈A πt(a|x) ⟨φ(x, a),θt⟩ for x ∈ X ,

and µt(x, a) = πt(a|x) ⟨ψ(x),Λcβt⟩ in round t we can obtain unbiased estimates of the gradients
of f with respect to θ, β, and ρ. For each primal update t, the algorithm uses a single sample
transition (Xt, At, Rt, X

′
t) generated by the behavior policy πB to compute an unbiased estimator

17

Algorithm 2 Offline primal-dual method for Average-reward MDPs
Input: Learning rates ζ, α,ξ,η, initial iterates β1 ∈ B(Dβ), ρ0 ∈ [0, 1], θ0 ∈ B(Dθ), π1 ∈ Π,

for t = 1 to T do
// Stochastic gradient descent:
Initialize: θ(1)t = θt−1;
for i = 1 to K do

Obtain sample Wt,i = (Xt,i, At,i, Rt,i, X
′
t,i);

Sample A′
t,i ∼ πt(·|X ′

t,i);

Compute g̃ρ,t,i = 1−
〈
φt,i,Λ

c−1βt

〉
;

g̃θ,t,i = φ
′
t,i

〈
φt,i,Λ

c−1βt

〉
−φt,i

〈
φt,i,Λ

c−1βt

〉
;

Update ρ(i+1)
t = Π[0,1](ρ

(i)
t − ξg̃ρ,t,i);

θ
(i+1)
t = ΠB(Dθ)(θ

(i)
t − ηg̃θ,t,i).

end for
Compute ρt =

1

K

∑K
i=1 ρ

(i)
t ;

θt =
1

K

∑K
i=1 θ

(i)
t ;

// Stochastic gradient ascent:
Obtain sample Wt = (Xt, At, Rt, X

′
t);

Compute vt(X ′
t) =

∑
a πt(a|X ′

t) ⟨φ(X ′
t, a),θt⟩;

Compute g̃β,t = Λc−1φt[Rt + vt(X
′
t)− ⟨θt,φt⟩ − ρt];

Update βt+1 = ΠB(Dβ)(βt + ζg̃β,t);

// Policy update:
Compute πt+1 = σ

(
α
∑t

k=1 Φθk

)
.

end for
Return: πJ with J ∼ U(T).

of the first gradient gβ for that round as g̃β,t = Λc−1φt[Rt + vt(X
′
t) − ⟨θt,φt⟩ − ρt]. Then, in

iteration i = 1, · · · ,K of the inner loop within round t, we sample transitions (Xt,i, At,i, Rt,i, X
′
t,i)

to compute gradient estimators with respect to ρ and θ as:

g̃ρ,t,i = 1−
〈
φt,i,Λ

c−1βt

〉
g̃θ,t,i = φ

′
t,i

〈
φt,i,Λ

c−1βt

〉
−φt,i

〈
φt,i,Λ

c−1βt

〉
.

We have used the shorthand notation φt,i = φ(Xt,i, At,i), φ′
t,i = φ(X ′

t,i, A
′
t,i). The update steps

are detailed in the pseudocode presented as Algorithm 2.

We now state the general form of our main result for this setting in Theorem C.1 below.
Theorem C.1. Consider a linear MDP (Definition 2.1) such that θπ ∈ B(Dθ) for all π ∈ Π. Further,
suppose that Cφ,c(π

∗;πB) ≤ Dβ. Then, for any comparator policy π∗ ∈ Π, the policy output by
Algorithm 2 satisfies:

E
[
⟨µπ∗

− µπout , r⟩
]
≤

2D2
β

ζT
+

log |A|
αT

+
1

2ξK
+

2D2
θ

ηK
+
ζG2

β,c

2
+
αD2

θD
2
φ

2
+
ξG2

ρ,c

2
+
ηG2

θ,c

2
,

where

G2
β,c = Tr(Λ2c−1)(1 + 2DθDφ)

2, (24)

G2
ρ,c = 2

(
1 +D2

β ∥Λ∥2c−1
2

)
, (25)

G2
θ,c = 4D2

φD
2
β ∥Λ∥2c−1

2 . (26)

18

In particular, using learning rates ζ =
2Dβ

Gβ,c

√
T

, α =

√
2 log |A|

DθDφ
√
T

, ξ = 1
Gρ,c

√
K

, and η = 2Dθ
Gθ,c

√
K

,

and setting K = T · 4Dβ2G
2
β,c+2D2

θD
2
φ log |A|

G2
ρ,c+4D2

θG
2
θ,c

, we achieve E
[
⟨µπ∗ − µπout , r⟩

]
≤ ϵ with a number

of samples nϵ that is

O
(
ϵ−4D4

θD
4
φD

4
β Tr(Λ

2c−1) ∥Λ∥2(2c−1)
2 log |A|

)
.

By remark A.2, we have that nϵ is of order O
(
ε−4D4

θD
12c−2
φ D4

βd
2−2c log |A|

)
.

Corollary C.2. Assume that the bound of the feature vectors Dφ is of order O(1), that Dω = Dψ =√
d which together imply Dθ ≤

√
d+ 1 +

√
dDq = O(

√
dDq) and that Dβ = c · Cφ,c(π

∗;πB) for
some positive universal constant c. Then, under the same assumptions of Theorem 3.2, nε is of order
O
(
ε−4D4

qCφ,c(π
∗;πB)

2d4−2c log |A|
)
.

Recall thatCφ,1/2 is always smaller thanCφ,1, but using c = 1/2 in the algorithm requires knowledge
of the covariance matrix Λ, and results in a slightly worse dependence on the dimension.

The proof of Theorem C.1 mainly follows the same steps as in the discounted case, with some added
difficulty that is inherent in the more challenging average-reward setup. Some key challenges include
treating the additional optimization variable ρ and coping with the fact that the optimal parameters
θ∗ and β∗ are not necessarily unique any more.

C.2 Analysis

We now prove our main result regarding the AMDP setting in Theorem C.1. Following the derivations
in the main text, we study the dynamic duality gap defined as

GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T) =

1

T

T∑
t=1

(
f(β∗, π∗; ρt,θt)− f(βt, πt; ρ

∗
t ,θ

∗
t)
)
. (27)

First we show in Lemma C.3 below that, for appropriately chosen comparator points, the expected
suboptimality of the policy returned by Algorithm 2 can be upper bounded in terms of the expected
dynamic duality gap.
Lemma C.3. Let θ∗t such that ⟨φ(x, a),θ∗t ⟩ = ⟨φ(x, a),θπt⟩ − inf(x,a)∈X×A ⟨φ(x, a),θπt⟩ holds
for all (x, a) ∈ X ×A, and let v∗t be defined as v∗t (x) =

∑
a∈A πt(a|x) ⟨φ(x, a),θ∗t ⟩ for all x. Also,

let ρ∗t = ρπt , π∗ be an optimal policy, and β∗ = Λ−cΦ⊤µ∗ where µ∗ is the occupancy measure of
π∗. Then, the suboptimality gap of the policy output by Algorithm 2 satisfies

ET [⟨µ∗ − µπout , r⟩] = GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T).

Proof. Substituting (β∗, π∗) = (Λ−cΦTµ∗, π∗) in the first term of the dynamic duality gap we have

f(β∗, π∗; ρt,θt) = ρt + ⟨Λ−cΦTµ∗ ,Λc[ω +Ψvθt,π∗ − θt − ρtϱ]⟩
= ρt + ⟨µ∗ , r + Pvθt,π∗ −Φθt − ρt1⟩
= ⟨µ∗ , r⟩+ ⟨µ∗ ,Evθt,π∗ −Φθt⟩+ ρt[1− ⟨µ∗,1⟩]
= ⟨µ∗ , r⟩.

Here, we have used the fact that µ∗ is a valid occupancy measure, so it satisfies the flow constraint
ETµ∗ = P Tµ∗ and the normalization constraint ⟨µ∗,1⟩ = 1. Also, in the last step we have used the
definition of vθt,π∗ that guarantees that the following equality holds:

⟨µ∗,Φθt⟩ =
∑
x∈X

ν∗(x)
∑
a∈A

π∗(a|x) ⟨θt,φ(x, a)⟩ =
∑
x∈X

ν∗(x)vθt,π∗(x) = ⟨µ∗ ,Evθt,π∗⟩.

19

For the second term in the dynamic duality gap, using that πt is Ft−1-measurable we write

f(βt, πt; ρ
∗
t ,θ

∗
t)

= ρ∗t + ⟨βt ,Λ
c[ω +Ψvθ∗

t ,πt
− θ∗t − ρ∗tϱ]⟩

= ρ∗t + ⟨βt ,Λ
c−1Et

[
φtφ

T

t [ω +Ψvθ∗
t ,πt

− θ∗t − ρ∗tϱ]
]
⟩

= ρ∗t +

〈
βt,Et

[
Λc−1φt

[
Rt +

∑
x,a

p(x|Xt, At)πt(a|x) ⟨φ(x, a),θ∗t ⟩ − ⟨φ(Xt, At),θ
∗
t ⟩ − ρ∗t

]]〉

= ρπt +

〈
βt,Et

[
Λc−1φt

[
Rt +

∑
x,a

p(x|Xt, At)πt(a|x) ⟨φ(x, a),θπt⟩ − ⟨φ(Xt, At),θ
πt⟩ − ρπt

]]〉
= ρπt + ⟨βt ,Et

[
Λc−1φt[r(Xt, At) + ⟨p(·|Xt, At), v

πt⟩ − qπt(Xt, At)− ρπt]
]
⟩

= ρπt = ⟨µπt , r⟩ ,

where in the fourth equality we used that ⟨φ(x, a)−φ(x′, a′), θ∗t ⟩ = ⟨φ(x, a)−φ(x′, a′), θπt⟩
holds for all x, a, x′, a′ by definition of θ∗t . Then, the last equality follows from the fact that the
Bellman equations for πt imply qπt(x, a) + ρπt = r(x, a) + ⟨p(·|x, a),vπt⟩.
Combining both expressions for f(β∗, π∗; ρt,θt) and f(βt, πt; ρ

∗
t ,θ

∗
t) in the dynamic duality gap

we have:

GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T) =

1

T

T∑
t=1

(
⟨µ∗ − µπt , r⟩

)
= ET [⟨µ∗ − µπout , r⟩] .

The second equality follows from noticing that, since πout is sampled uniformly from {πt}Tt=1,
E [⟨µπout , r⟩] = 1

T

∑T
t=1 E [⟨µπt , r⟩]. This completes the proof.

Having shown that for well-chosen comparator points the dynamic duality gap equals the expected
suboptimality of the output policy of Algorithm 2, it remains to relate the gap to the optimization
error of the primal-dual procedure. This is achieved in the following lemma.
Lemma C.4. For the same choice of comparators (β∗, π∗; ρ∗1:T ,θ

∗
1:T) as in Lemma C.3 the dynamic

duality gap associated with the iterates produced by Algorithm 2 satisfies

E [GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T)]

≤
2D2

β

ζT
+

H (π∗∥π1)
αT

+
1

2ξK
+

2D2
θ

ηK

+
ζ Tr(Λ2c−1)(1 + 2DφDθ)

2

2
+
αD2

φD
2
θ

2
+ ξ

(
1 +D2

β ∥Λ∥2c−1
2

)
+ 2ηD2

φD
2
β ∥Λ∥2c−1

2 .

Proof. The first part of the proof follows from recognising that the dynamic duality gap can be
rewritten in terms of the total regret of the primal and dual players in the algorithm. Formally, we
write

GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T)

=
1

T

T∑
t=1

(f(β∗, π∗; ρt,θt)− f(βt, πt; ρt,θt)) +
1

T

T∑
t=1

(f(βt, πt; ρt,θt)− f(βt, πt; ρ
∗
t ,θ

∗
t)) .

Using that β∗ = Λ−cΦ⊤µ∗, qt = ⟨φ(x, a),θt⟩, vt = vθt,πt
and that gβ,t = Λc[ω +Ψvt − θt −

ρtϱ], we see that term in the first sum can be simply rewritten as

f(β∗, π∗; ρt,θt)− f(βt, πt; ρt,θt)

= ⟨β∗ ,Λc[ω +Ψvθt,π∗ − θt − ρtϱ]⟩ − ⟨βt ,Λ
c[ω +Ψvθt,πt

− θt − ρtϱ]⟩
= ⟨β∗ − βt ,Λ

c[ω +Ψvt − θt − ρtϱ]⟩+ ⟨ΨTΛcβ∗ ,vθt,π∗ − vθt,πt
⟩

= ⟨β∗ − βt , gβ,t⟩+
∑
x∈X

ν∗(x) ⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩ .

20

In a similar way, using that ETµt = ΨTΛcβt and the definitions of the gradients gρ,t and gθ,t, the
term in the second sum can be rewritten as

f(βt, πt; ρt,θt)− f(βt, πt; ρ
∗
t ,θ

∗
t)

= ρt + ⟨βt ,Λ
c[ω +Ψvθt,πt

− θt − ρtϱ]⟩ − ρ∗t − ⟨βt ,Λ
c[ω +Ψvθ∗

t ,πt
− θ∗t − ρ∗tϱ]⟩

= (ρt − ρ∗t)[1− ⟨βt,Λ
cϱ⟩]− ⟨θt − θ∗t ,Λcβt⟩+

〈
ETµt,vθt,πt − vθ∗

t ,πt

〉
= (ρt − ρ∗t)[1− ⟨βt,Λ

cϱ⟩]− ⟨θt − θ∗t ,Λcβt⟩+ ⟨ΦTµt,θt − θ∗t ⟩
= (ρt − ρ∗t)[1− ⟨βt,Λ

cϱ⟩] + ⟨θt − θ∗t ,ΦTµt −Λcβt⟩

= (ρt − ρ∗t)gρ,t +
〈
θt − θ∗t , gθ,t

〉
=

1

K

K∑
i=1

(
(ρ

(i)
t − ρ∗t)gρ,t +

〈
θ
(i)
t − θ∗t , gθ,t

〉)
.

Combining both terms in the duality gap concludes the first part of the proof. As shown below
the dynamic duality gap is written as the error between iterates of the algorithm from respective
comparator points in the direction of the exact gradients. Formally, we have

GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T) =

1

T

T∑
t=1

(
⟨β∗ − βt , gβ,t⟩+

∑
x∈X

ν∗(x) ⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩

)

+
1

TK

T∑
t=1

K∑
i=1

(
(ρ

(i)
t − ρ∗t)gρ,t +

〈
θ
(i)
t − θ∗t , gθ,t

〉)
.

Then, implementing techniques from stochastic gradient descent analysis in the proof of Lemmas C.5
to C.7 and mirror descent analysis in Lemma B.3, the expected dynamic duality gap can be upper
bounded as follows:

E [GT (β
∗, π∗; ρ∗1:T ,θ

∗
1:T)]

≤
2D2

β

ζT
+

H (π∗∥π1)
αT

+
1

2ξK
+

2D2
θ

ηK

+
ζ Tr(Λ2c−1)(1 + 2DφDθ)

2

2
+
αD2

φD
2
θ

2
+ ξ

(
1 +D2

β ∥Λ∥2c−1
2

)
+ 2ηD2

φD
2
β ∥Λ∥2c−1

2 .

This completes the proof

Proof of Theorem C.1 First, we bound the expected suboptimality gap by combining Lemma
C.3 and C.4. Next, bearing in mind that the algorithm only needs T (K + 1) total samples from the
behavior policy we optimize the learning rates to obtain a bound on the sample complexity, thus
completing the proof.

C.3 Missing proofs for Lemma C.4

In this section we prove Lemmas C.5 to C.7 used in the proof of Lemma C.4. It is important to
recall that sample transitions (Xk, Ak, Rt, X

′
k) in any iteration k are generated in the following

way: we draw i.i.d state-action pairs (Xk, Ak) from µB , and for each state-action pair, the next X ′
k

is sampled from p(·|Xk, Ak) and immediate reward computed as Rt = r(Xk, Ak). Precisely in
iteration i of round t where k = (t, i), since (Xt,i, At,i) are sampled i.i.d from µB at this time step,
Et,i

[
φt,iφ

T
t,i

]
= E(x,a)∼µB

[φ(x, a)φ(x, a)T] = Λ.

Lemma C.5. The gradient estimator g̃β,t satisfies E
[
g̃β,t |Ft−1,θt

]
= gβ,t and

E
[
∥g̃β,t∥22

]
≤ Tr(Λ2c−1)(1 + 2DφDθ)

2.

Furthermore, for any β∗ with β∗ ∈ B(Dβ), the iterates βt satisfy

E

[
T∑

t=1

⟨β∗ − βt , gβ,t⟩

]
≤

2D2
β

ζ
+
ζT Tr(Λ2c−1)(1 + 2DφDθ)

2

2
. (28)

21

Proof. For the first part, we remind that πt is Ft−1-measurable and vt is determined given πt and θt.
Then, we write

E
[
g̃β,t |Ft−1,θt

]
= E

[
Λc−1φt[Rt + vt(X

′
t)− ⟨θt,φt⟩ − ρt] |Ft−1,θt

]
= E

[
Λc−1φt[Rt + Ex′∼p(·|Xt,At) [vt(x

′)]− ⟨θt,φt⟩ − ρt] |Ft−1,θt
]

= E
[
Λc−1φt[Rt + ⟨p(·|Xt, At),vt⟩ − ⟨θt,φt⟩ − ρt] |Ft−1,θt

]
= E

[
Λc−1φtφ

T

t [ω +Ψvt − θt − ρtϱ] |Ft−1,θt
]

= Λc−1E [φtφ
T

t |Ft−1,θt] [ω +Ψvt − θt − ρtϱ]

= Λc[ω +Ψvt − θt − ρtϱ] = gβ,t.

Next, we use the facts that r ∈ [0, 1] and ∥vt∥∞ ≤ ∥Φθt∥∞ ≤ DφDθ to show the following bound:

E
[
∥g̃β,t∥22 |Ft−1,θt

]
= E

[∥∥Λc−1φt[Rt + vt(X
′
t)− ⟨θt,φt⟩]

∥∥2
2
|Ft−1,θt

]
= E

[
|Rt + vt(X

′
t)− ⟨θt,φt⟩|

∥∥Λc−1φt

∥∥2
2
|Ft−1,θt

]
≤ E

[
(1 + 2DφDθ)

2
∥∥Λc−1φt

∥∥2
2
|Ft−1,θt

]
= (1 + 2DφDθ)

2E
[
φT

tΛ
2(c−1)φt |Ft−1,θt

]
= (1 + 2DφDθ)

2E
[
Tr(Λ2(c−1)φtφ

T

t) |Ft−1,θt

]
≤ Tr(Λ2c−1)(1 + 2DφDθ)

2.

The last step follows from the fact that Λ, hence also Λ2c−1, is positive semi-definite, so
Tr(Λ2c−1) ≥ 0. Having shown these properties, we appeal to the standard analysis of online
gradient descent stated as Lemma D.1 to obtain the following bound

E

[
T∑

t=1

⟨β∗ − βt , gβ,t⟩

]
≤

∥β1 − β∗∥22
2ζ

+
ζT Tr(Λ2c−1)(1 + 2DφDθ)

2

2
.

Using that ∥β∗∥2 ≤ Dβ concludes the proof.

Lemma C.6. The gradient estimator g̃ρ,t,i satisfies Et,i [g̃ρ,t,i] = gρ,t and Et,i

[
g̃2ρ,t,i

]
≤ 2 +

2D2
β ∥Λ∥2c−1

2 . Furthermore, for any ρ∗t ∈ [0, 1], the iterates ρ(i)t satisfy

E

[
K∑
i=1

(ρ
(i)
t − ρ∗t)gρ,t

]
≤ 1

2ξ
+ ξK

(
1 + ∥βt∥2Λ2c−1

)
.

Proof. For the first part of the proof, we use that βt is Ft,i−1-measurable, to obtain

Et,i [g̃ρ,t,i] = Et,i

[
1−

〈
φt,i,Λ

c−1βt

〉]
= Et,i

[
1−

〈
φt,iφ

T

t,iϱ,Λ
c−1βt

〉]
= 1− ⟨Λcϱ,βt⟩ = gρ,t.

In addition, using Young’s inequality and ∥βt∥2Λ2c−1 ≤ D2
β ∥Λ∥2c−1

2 we show that

Et,i

[
g̃2ρ,t,i

]
= Et,i

[(
1−

〈
φt,i,Λ

c−1βt

〉)2]
≤ 2 + 2Et,i

[
βT

tΛ
c−1φt,iφ

T

t,iΛ
c−1βt

]
= 2 + 2∥βt∥2Λ2c−1 ≤ 2 + 2D2

β ∥Λ∥2c−1
2 .

For the second part, we appeal to the standard online gradient descent analysis of Lemma D.1 to
bound on the total error of the iterates:

E

[
K∑
i=1

(ρ
(i)
t − ρ∗t)gρ,t

]
≤

(
ρ
(1)
t − ρ∗t

)2
2ξ

+ ξK
(
1 +D2

β ∥Λ∥2c−1
2

)
.

Using that
(
ρ
(1)
t − ρ∗t

)2 ≤ 1 concludes the proof.

22

Lemma C.7. The gradient estimator g̃θ,t,i satisfies Et,i

[
g̃θ,t,i

]
= gθ,t,i and Et,i

[
∥g̃θ,t,i∥22

]
≤

4D2
φD

2
β ∥Λ∥2c−1

2 . Furthermore, for any θ∗t with ∥θ∗t ∥2 ≤ Dθ, the iterates θ(i)t satisfy

E

[
K∑
i=1

〈
θ
(i)
t − θ∗t , gθ,t,i

〉]
≤ 2D2

θ

η
+ 2ηKD2

φD
2
β ∥Λ∥2c−1

2 . (29)

Proof. Since βt, πt, ρ
i
t and θit are Ft,i−1-measurable, we obtain

Et,i

[
g̃θ,t,i

]
= Et,i

[
φ′

t,i

〈
φt,i,Λ

c−1βt

〉
−φt,i

〈
φt,i,Λ

c−1βt

〉]
= ΦTEt,i

[
eX′

t,i,A
′
t,i

〈
φt,i,Λ

c−1βt

〉]
− Et,i

[
φt,iφ

T

t,i

]
Λc−1βt

= ΦTEt,i

[
[πt ◦ p(·|Xt, At)]

〈
φt,i,Λ

c−1βt

〉]
−Λcβt

= Φ[πt ◦ΨTEt,i

[
φt,iφ

T

t,i

]
Λc−1βt]−Λcβt

= Φ[πt ◦ΨTΛcβt]−Λcβt

= ΦTµt −Λcβt = gθ,t.

Next, we consider the squared gradient norm and bound it via elementary manipulations as follows:

Et,i

[∥∥g̃θ,t,i∥∥22] = Et,i

[∥∥φ′
t,i

〈
φt,i,Λ

c−1βt

〉
−φt,i

〈
φt,i,Λ

c−1βt

〉∥∥2
2

]
≤ 2Et,i

[∥∥φ′
t,i

〈
φt,i,Λ

c−1βt

〉∥∥2
2

]
+ 2Et,i

[∥∥φt,i

〈
φt,i,Λ

c−1βt

〉∥∥2
2

]
= 2Et,i

[
βT

tΛ
c−1φt,i

∥∥φ′
t,i

∥∥2
2
φT

t,iΛ
c−1βt

]
+ 2Et,i

[
βT

tΛ
c−1φt,i ∥φt,i∥22φ

T

t,iΛ
c−1βt

]
≤ 2D2

φEt,i

[
βT

tΛ
c−1φt,iφ

T

t,iΛ
c−1βt

]
+ 2D2

φEt,i

[
βT

tΛ
c−1φt,iφ

T

t,iΛ
c−1βt

]
= 2D2

φEt,i

[
βT

tΛ
c−1ΛΛc−1βt

]
+ 2D2

φEt,i

[
βT

tΛ
c−1ΛΛc−1βt

]
≤ 4D2

φ∥βt∥2Λ2c−1 ≤ 4D2
φD

2
β ∥Λ∥2c−1

2 .

Having verified these conditions, we appeal to the online gradient descent analysis of Lemma D.1 to
show the bound

E

[
K∑
i=1

〈
θ
(i)
t − θ∗t , gθ,t

〉]
≤

∥∥∥θ(1)t − θ∗t
∥∥∥2
2

2η
+ 2ηKD2

φD
2
β ∥Λ∥2c−1

2 .

We then use that
∥∥∥θ∗t − θ(1)t

∥∥∥
2
≤ 2Dθ for θ∗t ,θ

(1)
t ∈ B(Dθ), thus concluding the proof.

23

D Auxiliary Lemmas

The following is a standard result in convex optimization proved here for the sake of completeness—
we refer to Nemirovski & Yudin [25], Zinkevich [40], Orabona [28] for more details and comments
on the history of this result.
Lemma D.1 (Online Stochastic Gradient Descent). Given y1 ∈ B(Dy) and η > 0, define the
sequences y2, · · · , yn+1 and h1, · · · , hn such that for k = 1, · · · , n,

yk+1 = ΠB(Dy)

(
yk + ηĥk

)
,

and ĥk satisfies E
[
ĥk |Fk−1

]
= hk and E

[∥∥∥ĥk∥∥∥2
2
|Fk−1

]
≤ G2. Then, for y∗ ∈ B(Dy):

E

[
n∑

k=1

⟨y∗ − yk, hk⟩

]
≤

∥y1 − y∗∥22
2η

+
ηnG2

2
.

Proof. We start by studying the following term:

∥yk+1 − y∗∥22 =
∥∥∥ΠB(Dy)(yk + ηĥk)− y∗

∥∥∥2
2

≤
∥∥∥yk + ηĥk − y∗

∥∥∥2
2

= ∥yk − y∗∥22 − 2η
〈
y∗ − yk, ĥk

〉
+ η2

∥∥∥ĥk∥∥∥2
2
.

The inequality is due to the fact that the projection operator is a non-expansion with respect to
the Euclidean norm. Since E

[
ĥk |Fk−1

]
= hk, we can rearrange the above equation and take a

conditional expectation to obtain

⟨y∗ − yk, hk⟩ ≤
∥yk − y∗∥22 − E

[
∥yk+1 − y∗∥22 |Fk−1

]
2η

+
η

2
E
[∥∥∥ĥk∥∥∥2

2
|Fk−1

]

≤
∥yk − y∗∥22 − E

[
∥yk+1 − y∗∥22 |Fk−1

]
2η

+
ηG2

2
,

where the last inequality is from E
[∥∥∥ĥk∥∥∥2

2
|Fk−1

]
≤ G2. Finally, taking a sum over k = 1, · · · , n,

taking a marginal expectation, evaluating the resulting telescoping sum and upper-bounding negative
terms by zero we obtain the desired result as

E

[
n∑

k=1

〈
y∗ − yk, ĥk

〉]
≤

∥y1 − y∗∥22 − E
[
∥yn+1 − y∗∥22

]
2η

+
η

2

n∑
k=1

G2

≤
∥y1 − y∗∥22

2η
+
ηnG2

2
.

The next result is a similar regret analysis for mirror descent with the relative entropy as its distance
generating function. Once again, this result is standard, and we refer the interested reader to
Nemirovski & Yudin [25], Cesa-Bianchi & Lugosi [7], Orabona [28] for more details. For the
analysis, we recall that D denotes the relative entropy (or Kullback–Leibler divergence), defined for
any p, q ∈ ∆A as D (p∥q) =

∑
a p(a) log

p(a)
q(a) , and that, for any two policies π, π′, we define the

conditional entropy2 H (π∥π′)
.
=
∑

x∈X ν
π(x)D (π(·|x)∥π′(·|x)).

2Technically speaking, this quantity is the conditional entropy between the occupancy measures µπ and µπ′
.

We will continue to use this relatively imprecise terminology to keep our notation light, and we refer to Neu et al.
[27] and Bas-Serrano et al. [2] for more details.

24

Lemma D.2 (Mirror Descent). Let qt, . . . , qT be a sequence of functions from X ×A to R so that
∥qt∥∞ ≤ Dq for t = 1, . . . , T . Given an initial policy π1 and a learning rate α > 0, define the
sequence of policies π2, . . . , πT+1 such that, for t = 1, . . . , T :

πt+1(a|x) ∝ πte
αqt(x,a).

Then, for any comparator policy π∗:

T∑
t=1

∑
x∈X

νπ
∗
(x) ⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩ ≤

H (π∗∥π1)
α

+
αTD2

q

2
.

Proof. We begin by studying the relative entropy between π∗(·|x) and iterates πt(·|x), πt+1(·|x) for
any x ∈ X :

D (π∗(·|x)∥πt+1(·|x)) = D (π∗(·|x)∥πt(·|x))−
∑
a∈A

π∗(a|x) log πt+1(a|x)
πt(a|x)

= D (π∗(·|x)∥πt(·|x))−
∑
a∈A

π∗(a|x) log eαqt(x,a)∑
a′∈A πt(a

′|x)eαqt(x,a′)

= D (π∗(·|x)∥πt(·|x))− α ⟨π∗(·|x), qt(x, ·)⟩+ log
∑
a∈A

πt(a|x)eαqt(x,a)

= D (π∗(·|x)∥πt(·|x))− α ⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩

+ log
∑
a∈A

πt(a|x)eαqt(x,a) − α
∑
a∈A

πt(a|x)qt(x, a)

≤ D (π∗(·|x)∥πt(·|x))− α ⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩+
α2 ∥qt(x, ·)∥2∞

2

where the last inequality follows from Hoeffding’s lemma (cf. Lemma A.1 in 7). Next, we rearrange
the above equation, sum over t = 1, · · · , T , evaluate the resulting telescoping sum and upper-bound
negative terms by zero to obtain

T∑
t=1

⟨π∗(·|x)− πt(·|x), qt(x, ·)⟩ ≤
D (π∗(·|x)∥π1(·|x))

α
+
α ∥qt(x, ·)∥2∞

2
.

Finally, using that ∥qt∥∞ ≤ Dq and taking an expectation with respect to x ∼ νπ
∗

concludes the
proof.

25

E Detailed Computations for Comparing Coverage Ratios

For ease of comparison, we just consider discounted linear MDPs (Definition 2.1).
Definition E.1. Recall the following definitions of coverage ratio given by different authors in the
offline RL literature:

1. Cφ,c(π
∗;πB) = EX,A∼µ∗ [φ(X,A)]

⊤
Λ−2cEX,A∼µ∗ [φ(X,A)] (Ours)

2. C⋄(π∗;πB) = EX,A∼µ∗
[
φ(X,A)TΛ−1φ(X,A)

]
(e.g., Jin et al. [14])

3. C†(π∗;πB) = supy∈Rd

yTEX,A∼µ∗ [φ(X,A)φ(X,A)T]y
yTEX,A∼µB

[φ(X,A)φ(X,A)T]y
(e.g., Uehara & Sun [32])

4. CF,π(π
∗;πB) = maxf∈F

∥f−T πf∥2
µ∗

∥f−T πf∥2
µB

(e.g., Xie et al. [36]),

where c ∈ {1, 2}, Λ = EX,A∼µB
[φ(X,A)φ(X,A)T] (assumed invertible), F ⊆ RX×A, and

T π : F → R defined as (T πf)(x, a) = r(x, a) + γ
∑

x′,a′ p(x′|x, a)π(a′|x′)f(x′, a′) is the
Bellman operator associated to policy π.

The following is a generalization of the low-variance property from Section 6.
Proposition E.2. Let V [Z] = E[∥Z − E [Z]∥2] for a random vector Z. Then

Cφ,c(π
∗;πB) = EX,A∼µ∗

[
φ(X,A)TΛ−2cφ(X,A)

]
− VX,A∼µ∗

[
Λ−cφ(X,A)

]
.

Proof. We just rewrite Cφ,c from Definition E.1 as

Cφ,c(π
∗;πB) =

∥∥EX,A∼µ∗
[
Λ−cφ(X,A)

]∥∥2 .
The result follows from the elementary property of variance V [Z] = E[∥Z∥2]− ∥E[Z]∥2.

Proposition E.3. C†(π∗;πB) ≤ C⋄(π∗;πB) ≤ dC†(π∗;πB).

Proof. Let (X∗, A∗) ∼ µ∗ andM = E [φ(X∗, A∗)φ(X∗, A∗)]. First, we rewrite C⋄ as

C⋄(π∗;πB) = E
[
φ(X∗, A∗)TΛ−1φ(X∗, A∗)

]
= E

[
Tr(φ(X∗, A∗)TΛ−1φ(X∗, A∗))

]
= E

[
Tr(φ(X∗, A∗)φ(X∗, A∗)TΛ−1)

]
(30)

= Tr(MΛ−1) (31)

= Tr(Λ−1/2MΛ−1/2), (32)

where we have used the cyclic property of the trace (twice) and linearity of trace and expectation.
Note that, since Λ is positive definite, it admits a unique positive definite matrix Λ1/2 such that
Λ = Λ1/2Λ1/2. We rewrite C† in a similar fashion

C†(π∗;πB) = sup
y∈Rd

yTMy

yTΛy

= sup
z∈Rd

zTΛ−1/2MΛ−1/2z

zTz
(33)

= λmax(Λ
−1/2MΛ−1/2), (34)

where λmax denotes the maximum eigenvalue of a matrix. We have used the fact that bothM and
Λ are positive definite and the min-max theorem. Since the quadratic form Λ−1/2MΛ−1/2 is also
positive definite, and the trace is the sum of the (positive) eigenvalues, we get the desired result.

Proposition E.4 (cf. the proof of Theorem 3.2 from [36]). Let F = {fθ : (x, a) 7→ ⟨φ(x, a),θ⟩|θ ∈
Θ ⊆ Rd} where φ is the feature map of the linear MDP. Then

CF,π(π
∗;πB) ≤ C†(π∗;πB),

with equality if Θ = Rd.

26

Proof. Fix any policy π and let T = T π. By linear Bellman completeness of linear MDPs [13],
T f ∈ F for any f ∈ F . For fθ : (x, a) 7→ ⟨φ(x, a),θ⟩, let T θ ∈ Θ be defined so that T fθ :
(x, a) 7→ ⟨φ(x, a), T θ⟩. Then

CF,π(π
∗;πB) = max

f∈F

EX,A∼µ∗

[
(f(X,A)− T f(X,A))2

]
EX,A∼µB

[
(f(X,A)− T f(X,A))2

] (35)

≤ max
θ∈Rd

EX,A∼µ∗
[
⟨φ(X,A),θ − T θ⟩2

]
EX,A∼µB

[⟨φ(X,A),θ − T θ⟩2]
(36)

= max
y∈Rd

EX,A∼µ∗
[
⟨φ(X,A), y⟩2

]
EX,A∼µB

[⟨φ(X,A), y⟩2]
(37)

= max
y∈Rd

yTEX,A∼µ∗ [φ(X,A)φ(X,A)T] y

yTEX,A∼µB
[φ(X,A)φ(X,A)T] y

, (38)

where the inequality in Equation (36) holds with equality if Θ = Rd.

27

	Introduction
	Preliminaries
	Algorithm and Main Results
	Main result

	Analysis
	Extension to Average-Reward MDPs
	Discussion and Final Remarks
	Complete statement of Theorem 3.2
	Missing Proofs for the Discounted Setting
	Proof of Lemma 4.1
	Proof of Lemma ??
	Regret bounds for stochastic gradient descent / ascent

	Analysis for the Average-Reward MDP Setting
	Algorithm for average-reward MDPs
	Analysis
	Missing proofs for Lemma C.4

	Auxiliary Lemmas
	Detailed Computations for Comparing Coverage Ratios

