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Abstract—We consider the problem of limited-delay
lossy coding of individual sequences. Here the goal is
to design (fixed-rate) compression schemes to minimize
the normalized expected distortion redundancy relative
to a reference class of coding schemes, measured as the
difference between the average distortion of the algorithm
and that of the best coding scheme in the reference
class. In compressing a sequence of length T , the best
schemes available in the literature achieve an O(T−1/3)
normalized distortion redundancy relative to finite ref-
erence classes of limited delay and limited memory. It
has also been shown that the distortion redundancy is at
least of order 1/

√
T in certain cases. In this paper we

narrow the gap between the upper and lower bounds, and
give a compression scheme whose distortion redundancy
is O(

√
ln(T )/T ), only a logarithmic factor larger than

the lower bound. The method is based on the recently
introduced Shrinking Dartboard prediction algorithm, a
variant of the exponentially weighted average prediction.
Our method is also applied to the problem of zero-
delay scalar quantization, where O(ln(T )/

√
T ) distortion

redundancy is achieved relative to the (infinite) class of
scalar quantizers of a given rate, almost achieving the
known lower bound of order 1/

√
T .

I. INTRODUCTION

In this paper we consider the problem of fixed-rate
sequential lossy source coding of individual sequences
with limited delay. Here a source sequence x1, x2, . . .
taking values from the source alphabet X has to
be transformed into a sequence y1, y2, . . . of channel
symbols taking values in the finite channel alphabet
{1, . . . ,M}, and these channel symbols are then used
to produce the reproduction sequence x̂1, x̂2, . . .. The
rate of the scheme is defined as lnM nats (where
ln denotes the natural logarithm), and the scheme is
said to have δ1 encoding and δ2 decoding delay if,
for any t = 1, 2, . . ., the channel symbol yt depends
on xt+δ1 = (x1, x2, . . . , xt+δ1) and x̂t depends on
yt+δ2 = (y1, . . . , yt+δ2). The goal of the coding
scheme is to minimize the distortion between the
source sequence and the reproduction sequence. In this
work we concentrate on the individual sequence setting
and aim to find methods that work uniformly well

with respect to a reference coder class on every indi-
vidual (deterministic) sequence. Thus, no probabilistic
assumption is made on the source sequence, and the
performance of a scheme is measured by the distortion
redundancy defined as the maximal difference, over
all source sequences of a given length, between the
normalized distortion of the given coding scheme and
that of the best reference coding scheme matched to
the underlying source sequence.

The study of limited-delay (zero-delay) lossy source
coding in the individual sequence setting was ini-
tiated by Linder and Lugosi [1], who showed the
existence of randomized coding schemes that perform,
on any bounded source sequence, essentially as well
as the best scalar quantizer matched to the underly-
ing sequence. More precisely, it was shown that the
normalized squared error distortion of their scheme
on any source sequence xT of length T is at most
O(T−1/5 lnT ) larger than the normalized distortion
of the best scalar quantizer matched to the source
sequence in hindsight. The method of [1] is based on
the exponentially weighted average (EWA) prediction
method [2], [3], [4]: at each time instant a coding
scheme (a scalar quantizer) is selected based on its
“estimated” performance.

The coding scheme of [1] was improved and gener-
alized by Weissman and Merhav [5]. They considered
the more general case when the reference class F
is a finite set of limited-delay and limited-memory
coding schemes. To reduce the communication about
the actual decoder to be used at the receiver, Weissman
and Merhav introduced a coding scheme where the
source sequence is split into blocks of equal length,
and in each block a fixed encoder-decoder pair is
used with its identity communicated at the beginning
of each block. Similarly to [1], the code for each
block is chosen using the EWA prediction method.
The resulting scheme achieves an O(T−1/3 ln2/3 |F|)
distortion redundancy, or, in the case of the infinite
class of scalar quantizers, the distortion redundancy



becomes O(T−1/3 lnT ).
The results of [5] have been extended in vari-

ous ways, but all of these works are based on the
block-coding procedure described above. A stochastic
noisy channel setting is considered in [6], network
quantization in [7], and a Wyner-Ziv setting (with
side information at the decoder) is considered in [8].
Complexity issues have also been addressed in several
papers: efficient solutions are given for the zero-delay
case in [9], [10] (and, based on these papers, in [6],
[7], [8] as well), and for the problem of competing
with large classes of time-varying source codes in [7].

Since the above coding schemes are based on the
block-coding scheme of [5], they cannot achieve bet-
ter distortion redundancy than O(T−1/3) up to some
logarithmic factors. On the other hand, the distortion
redundancy is known to be bounded from below by a
constant multiple of T−1/2 in the zero-delay case [9],
leaving a gap between the best known upper and lower
bounds. Thus, to improve upon the existing coding
schemes, the communication overhead (describing the
actually used coding schemes) between the encoder
and the decoder has to be reduced, which is achievable
by controlling the number of times the coding scheme
changes in a better way then blockwise coding. This
goal can be achieved by the recent Shrinking Dartboard
(SD) algorithm of Geulen, Voecking, and Winkler [11],
a modified version of the EWA prediction method that
is designed to control the number of expert switches.

In this paper we construct a randomized coding strat-
egy, which uses a slightly modified version of the SD
algorithm as the prediction component, that achieves
an O(

√
lnT/T ) average distortion redundancy with

respect to a finite reference class of limited-delay and
limited-memory source codes. The method can also be
applied to compete with the (infinite) reference class
of scalar quantizers, where it achieves an O(lnT/

√
T )

distortion redundancy. Note that these bounds are only
logarithmic factors larger than the corresponding lower
bound.

In Section II we revisit the SD algorithm of [11]
with slight improvements relative to its original ver-
sion. Our randomized coding strategy, based on the
SD prediction method, is introduced and analyzed in
Section IV. The strategy is applied to the problem of
adaptive zero-delay lossy source coding in Section V.
Conclusions are drawn and extensions are described in
Section VI.

II. THE SHRINKING DARTBOARD ALGORITHM
REVISITED

In this section we define the problem of sequential
decision making (prediction) with expert advice, and
present the Shrinking Dartboard algorithm of [11].

Suppose we want to perform a sequence of decisions
from a finite set F of size N = |F| without the
knowledge of the future. At each time step t = 1, 2, . . .
the decision maker chooses an action it ∈ F and
suffers a loss dt,it . At the end of each time step t the
loss dt,i ∈ [0, 1] for all i ∈ F is also revealed to the
decision maker, whose goal is to minimize, for some
T > 0, the average regret

RT = max
i∈F

1

T

(
T∑
t=1

dt,it −DT,i

)

with respect to the constant actions i ∈ F , where
DT,i =

∑T
t=1 dt,i is the cumulative loss of action i

up to time T . It is assumed that the decision maker
has access to a sequence U1,U2, . . . of independent
random variables with uniform distribution over the
interval [0, 1], and its decision it depends only on
Ut = (U1, . . . ,Ut) and dτ,i, τ = 1, . . . , t− 1, i ∈ F .
It is also assumed that the sequence {dt,i} is fixed
in advance for all i ∈ F and t = 1, 2, . . . , and, in
particular, it is not affected by the (random) choices it
of the decision maker.

A well-known solution to this problem (which is op-
timal under various conditions) is the EWA prediction
method that, at time t, chooses action i with proba-
bility proportional to e−ηtDt−1,i for some sequence of
positive step size parameters {ηt}Tt=1. It can be shown
(using techniques developed in [12]) that if ηt+1 ≤ ηt
for all t then the average expected regret of this algo-
rithm satisfies E [RT ] ≤

∑T
t=1 ηt/(8T )+lnN/(ηTT ),

hence setting the step sizes ηt = 2
√

lnN/t one obtains
E [RT ] ≤

√
lnN/T (here the expectation is taken with

respect to the randomizing sequence UT ).
While the EWA algorithm may choose a different

action in each time step, in certain cases (e.g., in the
coding scenario described in this paper) switching from
one action to another has some extra cost, and so
preference should be given to action sequences with
fewer switches. The SD algorithm [11] addresses this
problem and provides the same performance guarantee
as EWA by controlling the number of switches between
different actions, that is, the number of time instants
when it 6= it−1. A modified version of this prediction
method, called the modified SD (mSD) algorithm, is
shown in Algorithm 1. The difference between the
SD and the mSD algorithms is that mSD is horizon
independent, which is achieved by introducing the
constant ct in the algorithm (setting ηt ≡ η the mSD
algorithm reduces to SD).

To see that the mSD algorithm is well-defined we
have to show that ct

wt,i

wt−1,i
≤ 1 for all t and i. For

t = 1, the statement follows from the definitions, since



Algorithm 1 The modified Shrinking Dartboard algo-
rithm

1) Set ηt > 0 with ηt+1 ≤ ηt for all t = 1, 2, . . .,
η0 = η1, and D0,i = 0 and w0,i = 1/N for all
actions i ∈ F .

2) for t = 1, . . . , T do
a) Set wt,i = 1

N e
−ηtDt−1,i for all i ∈ F .

b) Set pt,i =
wt,i∑N

j=1 wt,j
for all i ∈ F .

c) Set ct = e(ηt−ηt−1)(t−2).
d) With probability ct

wt,it−1

wt−1,it−1
, set it = it−1

if t ≥ 2, that is, do not change expert;
otherwise choose it randomly according to
the distribution {pt,1, . . . , pt,N}.

e) Observe the losses dt,i and set Dt,i =
Dt−1,i + dt,i for all i ∈ F .

end for

c1 = 1. For t ≥ 2 it follows since
wt,i
wt−1,i

=exp (ηt−1Dt−2,i − ηtDt−1,i)

≤ exp ((ηt−1 − ηt)Dt−2,i − ηtdt−1,i)
≤ exp ((ηt−1 − ηt) (t− 2)) = 1/ct.

Note that the only difference between the mSD and
the EWA prediction algorithms is the presence of the
first random choice in step 2d of mSD: while the EWA
algorithm chooses a new action in each time step t
according to the distribution {pt,1, . . . , pt,N}, the mSD
algorithm sticks with the previously chosen action with
some probability.

In the following, we state two results crucial for the
analysis of the coding scheme that we will propose
in the next section. The next lemma shows that the
marginal distributions generated by the mSD and the
EWA algorithms are the same. The lemma is obtained
by a slight modification of the proof Lemma 1 in [11].

Lemma 1: Assume the mSD algorithm is run with
ηt+1 ≤ ηt for all t = 1, 2, . . . , T . Then the probability
of selecting action i at time t satisfies P [it = i] = pt,i
for all t = 1, 2, . . . and i ∈ F .

As a consequence of this result, the expected regret
of mSD matches that of EWA, so the performance
bound of EWA, mentioned in the previous section,
holds for the mSD algorithm as well [11, Lemma 2]).

Lemma 2: Assume ηt+1 ≤ ηt for all t =
1, 2, . . . , T . Then the expected average regret of the
mSD algorithm can be bounded as

E [RT ] ≤
T∑
t=1

ηt
8T

+
lnN

TηT
.

Setting ηt =
√
lnN/T optimally (as a function of

the time horizon T ), the bound becomes
√

lnN
2T , while

setting ηt = 2
√
lnN/t independent of T , we have

E [RT ] ≤
√

lnN/T .
Let ST = {t : it 6= it−1, 2 ≤ t ≤ T} denote the

number of times the mSD algorithm switches between
different actions. The next lemma, which is a slightly
improved and generalized version of Lemma 2 from
[11] gives an upper bound on |ST |.

Lemma 3: Let ST denote the number of times the
mSD algorithm switches between different actions.
Then

E [|ST |] ≤ ηTD∗T−1 + lnN +

T−1∑
t=1

(ηt − ηT )

where D∗T−1 = mini∈F DT−1,i.
In particular, for ηt =

√
lnN/T , we have

E [|ST |] ≤
√
T lnN + lnN , while setting ηt =

2
√

lnN/t, we obtain E [|ST |] ≤ 4
√
T lnN + lnN .

III. LIMITED-DELAY LIMITED-MEMORY
SEQUENTIAL SOURCE CODES

A fixed-rate delay-δ (randomized) sequential source
code of rate lnM is defined by an encoder-decoder pair
connected via a discrete noiseless channel of capacity
lnM . Here δ is a nonnegative integer and M ≥ 2 is a
positive integer. The input to the encoder is a sequence
x1, x2, . . . taking values in some source alphabet X . At
each time instant t = 1, 2, . . ., the encoder observes
xt and a random number Ut, where the randomizing
sequence U1,U2, . . . is assumed to be independent
with its elements uniformly distributed over the interval
[0, 1]. At each time instant t + δ, t = 1, 2, . . .,
based on the source sequence xt+δ = (x1, . . . , xt+δ)
and the randomizing sequence Ut = (U1, . . . ,Ut)
received so far, the encoder produces a channel symbol
yt ∈ {1, 2, . . . ,M} which is then transmitted to the
decoder. After receiving yt, the decoder outputs the
reconstruction value x̂t ∈ X̂ based on the channel
symbols yt = (y1, . . . ,yt) received so far, where X̂
is the reconstruction alphabet.

Formally, a code is given by a sequence of encoder-
decoder functions (f, g) = {ft, gt}∞t=1, where

ft : X t+δ × [0, 1]t → {1, 2, . . . ,M}

and
gt : {1, 2, . . . ,M}t → X̂

so that yt = ft(x
t+δ,Ut) and x̂t = gt(y

t), t =
1, 2, . . .. Note that the total delay of the encoding and
decoding process is δ.1

1Although we require the decoder to operate with zero delay,
this requirement introduces no loss in generality, as any finite-delay
coding system with δ1 encoding and δ2 decoding delay (described
in Section I) can be represented equivalently in this way with δ1+δ2
encoding and zero decoding delay [5].



Now let F be a finite set of reference codes with
|F| = N . The cumulative distortion of the sequential
scheme after reproducing the first T symbols is given
by

D̂T (x
T+δ) =

T∑
t=1

d(xt, x̂t),

where d : X ×X̂ → [0, 1] is some distortion measure,2

while the minimal cumulative distortion achievable by
codes from F is

D∗F (x
T+δ) = min

(f,g)∈F

T∑
t=1

d
(
xt, gt(y

t)
)

where the sequence yT is generated sequentially by
(f, g), that is, yt = ft

(
xt+δ,Ut

)
. Of course, in

general it is impossible to come up with a coding
scheme that attains this distortion without knowing
the whole input sequence beforehand. Thus, our goal
is to construct a coding scheme that asymptotically
achieves the performance of the above encoder-decoder
pair. Formally this means that we want to obtain a
randomized coding scheme that minimizes the worst-
case expected normalized distortion redundancy

R̂T = max
xT∈XT

1

T

{
E
[
D̂T

(
xT+δ

)]
−D∗F

(
xT+δ

)}
,

where the expectation is taken with respect to the
randomizing sequence UT of our coding scheme.

The decoder {gt} is said to be of memory s ≥ 0 if
gt(ŷ

t) = gt(ỹ
t) for all t and ŷt, ỹt ∈ {0, . . . ,M}t such

that ŷtt−s = ỹtt−s, where ŷtt−s = (ŷt−s, ŷt−s+1, . . . , ŷt)
and ỹtt−s = (ỹt−s, ỹt−s+1, . . . , ỹt). Let Fδ denote
the collection of all (randomized) delay-δ sequential
source codes of rate lnM , and let Fδs denote the class
of codes in Fδ with memory s.

IV. THE ALGORITHM

Next we describe a coding scheme, based on the
mSD prediction algorithm, that adaptively creates
blocks of variable length such that on the average
O(
√
T ) blocks are created, and so the overhead used to

transmit code descriptions scales with
√
T instead of

T 2/3 in [5]. Assuming a finite reference class F ∈ Fδs ,
our coding scheme works as follows.

At each time instant t the mSD algorithm selects one
code (f (t),g(t)) from the finite reference class F ; the
loss in the mSD algorithm associated with (f, g) ∈ F
is defined by

dt,(f,g)(x
t+δ) = d

(
xt, gt

(
y′t
))

(1)

where y′1, y
′
2, . . . , y

′
t is the sequence obtained by us-

ing the coding scheme (f, g) to encode xt, that is,

2All results may be extended trivially for arbitrary bounded
distortion measures

y′t = ft(x
t+δ,Ut) (note that dt,(f,g) can be computed

at the encoder at time t+δ). The mSD algorithm splits
the time into blocks [1, t1], [t1 + 1, t2], [t2 + 1, t3], . . .
in a natural way such that the decoder of the reference
code chosen by the algorithm is constant over each
block, that is, g(ti+1) = g(ti+2) = · · · = g(ti+1) and
g(ti) 6= g(ti+1) for all i (here we used the convention
t0 = 0). Since the beginning of a new block can
only be noticed at the encoder, this event has to be
communicated to the decoder. In order to do so, we
select randomly a new-block signal v of length A (that
is, v ∈ {1, . . . ,M}A), and v is transmitted over the
channel in the first A time steps of each block. In the
next B time steps of the block the identity of the de-
coder chosen by the mSD algorithm is communicated,
where B =

⌈
ln |{g:(f,g)∈F}|

lnM

⌉
is the number of channel

symbols required to describe uniquely all possible
decoder functions. In the remainder of the block the
selected encoder (or, possibly, more encoders) is used
to encode the source symbols.

On the other hand, whenever the decoder observes
v in the received channel symbol sequence yt, it
starts a new block. In this block the decoder first
receives the index of the reference decoder to be used
in the block, and the received reference decoder is
used in the remainder of the block to generate the
reproduction symbols. One slight problem here is that
the new-block signal may be obtained by encoding
the input sequence; in this case, to synchronize with
the decoder, a new block is started at the encoder.
We can keep the loss introduced by these unnecessary
new blocks low by a careful choice of the new-block
signal. Clearly, if v is selected uniformly at random
from {1, 2, . . . ,M}A then for any fixed string u ∈
{1, 2, . . . ,M}A, P [v = u] = 1/MA. Thus, setting
A = O(lnT ) makes P [v = u] = O(1/T ), and so the
expected number of unnecessary new blocks is at most
a constant in T time steps.

The next result shows that the normalized distortion
redundancy of the proposed scheme is O(

√
ln(T )/T ).

Theorem 1: For any finite reference class F ⊂ Fδs
and time horizon T > 0 there exists an adaptive
sequential source coding scheme with expected nor-
malized distortion redundancy bounded as

R̂T ≤ 2

√
ln |F|
T

(
17

8
+
ln(T |F|)
lnM

+s

)
+O

(
lnT

T

)
.

In the above, the parameters A =
⌈

lnT
lnM

⌉
and ηt =

η = O(1/
√
T lnT ) are set as a function of the time

horizon T . The proposed algorithm can be modified
to be strongly sequential in the sense that it becomes
horizon independent. The main difference is that the
new-block signal will be time-variant: at time instants



Mk−1 the kth symbol vk of v is transmitted, and
at each time instant t the so far received new-block
signal vAt of length At =

⌈
ln t
lnM

⌉
is used. Setting

ηt = O(1/
√
t ln t), it can be shown that the modified

algorithm has only a constant time larger regret than
the original, horizon-dependent one.

V. SEQUENTIAL ZERO-DELAY LOSSY SOURCE
CODING

An important and widely studied special case of the
source coding problem considered is the case of on-
line scalar quantization, that is, the problem of zero-
delay lossy source coding with memoryless encoders
and decoders [1], [5], [9], [10]. Here we assume for
simplicity X = [0, 1] and d(x, x̂) = (x − x̂)2. An
M -level scalar quantizer Q (defined on [0, 1]) is a
measurable mapping [0, 1] → C, where the codebook
C is a finite subset of [0, 1] with cardinality |C| =M .
The elements of C are called the code points. The
instantaneous squared distortion of Q for input x
is (x − Q(x))2. Without loss of generality we will
only consider nearest neighbor quantizers Q satisfying
(x−Q(x))2 = minx̂∈C(x− x̂)2.

Let Q denote the collection of all M -level nearest
neighbor quantizers. In this section our goal is to
design a sequential coding scheme that asymptotically
achieves the performance of the best scalar quantizer
(from Q) for all source sequences xT . Note that
the expected normalized distortion redundancy in this
special case is defined as

max
xT∈[0,1]T

1

T
E

[
T∑
t=1

(xt−x̂t)2
]
−min
Q∈Q

1

T

T∑
t=1

(xt−Q(xt))
2.

To be able to apply the results of the previous
section, we approximate the infinite class Q with
QK ⊂ Q, the set of M -level nearest neighbor scalar
quantizers whose code points all belong to the set{

1
2K ,

3
2K , . . . ,

2K−1
2K

}
. It is shown in [9] that the

distortion redundancy of any sequential coding scheme
relative to Q is at least on the order of T−1/2. The next
theorem shows that the slightly larger O(T−1/2 lnT )
normalized distortion redundancy is achievable.

Theorem 2: There exists an adaptive sequential cod-
ing scheme whose normalized expected distortion re-
dundancy relative to the reference class Q satisfies, for
any T ≥ 2,

R̂T ≤

√
2M lnT

T

(
25

8
+
(M+2) lnT

2 lnM
+s

)
+O

(
ln2 T

T

)
and the coding scheme can be implemented with
O(T 2) time and O(T ) space complexity.

VI. CONCLUSION

We provided a sequential lossy source coding
scheme that achieves an O(

√
ln(T )/T ) normalized

distortion redundancy relative to any finite reference
class of limited-delay limited-memory codes, improv-
ing the earlier results of O(T−1/3). Applied to the
case when the reference class is the (infinite) set
of scalar quantizers, we showed that the algorithm
achieves O(ln(T )/

√
T ) normalized distortion redun-

dancy, which is almost optimal in view that the nor-
malized distortion redundancy is known to be at least
of order 1/

√
T . The results can also be extended to

the noisy-channel and the Wyner-Ziv settings [13].
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