
1

Random-Walk Perturbations for Online
Combinatorial Optimization

Luc Devroye, Gábor Lugosi and Gergely Neu

Abstract

We study online combinatorial optimization problems where a learner is interested in minimizing
its cumulative regret in the presence of switching costs. To solve such problems, we propose a
version of the follow-the-perturbed-leader algorithm in which the cumulative losses are perturbed by
independent symmetric random walks. In the general setting, our forecaster is shown to enjoy near-
optimal guarantees on both quantities of interest, making it the best known efficient algorithm for
the studied problem. In the special case of prediction with expert advice, we show that the forecaster
achieves an expected regret of the optimal order O(

√
n logN) where n is the time horizon and N

is the number of experts, while guaranteeing that the predictions are switched at most O(
√
n logN)

times, in expectation.

Index Terms

Online learning, Online combinatorial optimization, Follow the Perturbed Leader, Random walk

I. PRELIMINARIES

In this paper we study the problem of online prediction with expert advice (see [1]), and
in particular, online linear optimization (see, e.g., [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]). The problem may be described as a repeated game between a forecaster and an
adversary—the environment. At each time instant t = 1, . . . , n, the forecaster chooses one
of the N available actions and suffers a loss corresponding to the chosen action i. Each
action i is represented by a vector vi ∈ Rd, while the losses assigned by the environment
at time t are described by the loss vector `t ∈ [0, 1]d. Thus, given the set of actions S =
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Parameters: set of actions S ⊆ Rd, number of rounds n;
The environment chooses the loss vector `t ∈ [0, 1]d for all t = 1, . . . , n.
For all t = 1, 2, . . . , n, repeat

1) The forecaster chooses a probability distribution pt over S.
2) The forecaster draws an action Vt randomly according to pt.
3) The environment reveals `t.
4) The forecaster suffers loss V >t `t.

Fig. 1. Online linear optimization.

{vi : i = 1, 2, . . . , N} ⊆ Rd at every time instant t, the forecaster chooses, in a possibly
randomized way, a vector Vt ∈ S and suffers loss V >t `t.

We consider the so-called oblivious adversary model in which the environment selects
all losses before the prediction game starts and reveals the loss vector `t at time t after
the forecaster has made its prediction. The losses are deterministic but the forecaster may
randomize: at time t, the forecaster chooses a probability distribution pt over the set of N
actions and draws a random action It according to the distribution pt. The prediction protocol
is described in Figure 1.

The usual goal for the standard prediction problem is to devise an algorithm such that the
cumulative loss L̂n =

∑n
t=1 V

>
t `t is as small as possible, in expectation and/or with high

probability (where probability is with respect to the forecaster’s randomization). Since we do
not make any assumption on how the environment generates the losses `t, we cannot hope
to minimize the above loss. Instead, a meaningful goal is to minimize the performance gap
between our algorithm and the strategy that selects the best action chosen in hindsight. This
performance gap is called the regret and is defined formally as

Rn = max
i∈{1,2,...,N}

n∑
t=1

(Vt − v)> `t = L̂n − L∗n,

where we have also introduced the notation L∗n = minv∈S v
>∑n

t=1 `t.
To gain simplicity in the presentation, we restrict our attention to the case of online

combinatorial optimization in which S ⊂ {0, 1}d, that is, each action is represented as a
binary vector. This special case arguably contains most important applications such as the
online shortest path problem. In this example, a fixed directed acyclic graph of d edges
is given with two distinguished vertices u and w. The forecaster, at every time instant t,
chooses a directed path from u to w. Such a path is represented by its binary incidence
vector v ∈ {0, 1}d. The components of the loss vector `t ∈ [0, 1]d represent losses assigned
to the d edges and v>`t is the total loss assigned to the path v. Another (non-essential)
simplifying assumption is that every action v ∈ S has the same number of 1’s: ‖v‖1 = m

for all v ∈ S. The value of m plays an important role in the bounds presented in the paper.
A fundamental special case of the framework above is prediction with expert advice. In this

setting, we have m = 1, d = N , and the learner has access to the unit vectors S = {ei}Ni=1 as
the decision set. Minimizing the regret in this setting is a well-studied problem (see the book
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of Cesa-Bianchi and Lugosi [1]). It is known that no matter what algorithm the forecaster
uses,

lim inf
n,N→∞

sup
ERn√

(n/2) lnN
≥ 1,

where the supremum is taken with respect to all possible loss assignments with losses in
[0, 1]. On the other hand, several prediction algorithms are known whose expected regret is
of optimal order O(

√
n logN) and many of them achieve a regret of this order with high

probability. Perhaps the most popular one is the exponentially weighted average forecaster
(a variant of weighted majority algorithm of Littlestone and Warmuth [13], and aggregating
strategies of Vovk [14], also known as Hedge by Freund and Schapire [15]). The exponentially
weighted average forecaster assigns probabilities to the actions that are inversely proportional
to an exponential function of the loss accumulated by each action up to time t.

Another popular forecaster is the follow the perturbed leader (FPL) algorithm of Han-
nan [16]. Kalai and Vempala [6] showed that Hannan’s forecaster, when appropriately modi-
fied, indeed achieves an expected regret of optimal order. At time t, the FPL forecaster adds
a random perturbation vector Zt ∈ RN to the cumulative loss Lt−1 =

∑t−1
s=1 `s of each action

and chooses an action v that minimizes v>(Lt−1 + Zt). If the elements of the perturbation
vector have joint density (η/2)Ne−η‖z‖1 for η ∼

√
logN/n, then the expected regret of

the forecaster is of order O(
√
n logN) ([6], see also [1], [17], [18]). This is true whether

Z1, . . . ,Zn are independent or not. It they are independent, then one may show that the regret
is concentrated around its expectation. Another interesting choice is when Z1 = · · · = Zn,
that is, the same perturbation is used over time. Even though this forecaster has an expected
regret of optimal order, it may fail with reasonably high probability since its regret is much
less concentrated.

While the results presented above still hold in the general case where m > 1 when treating
each v ∈ S as a separate action, one may gain important computational advantage by taking
the structure of the action set into account. In particular, as [6] emphasize, FPL-type forecasters
may often be computed efficiently. Interestingly, this efficiency does not come at the price
of inferior regret guarantees: as Neu and Bartók [19] have recently shown, an appropriately
tuned version of FPL achieves the same regret of O(m3/2

√
d log d) as the straightforward

extension of the exponentially weighted forecaster. The only known forecaster to achieve better
performance than this is Component Hedge proposed by Koolen, Warmuth and Kivinen [10],
guaranteeing a minimax optimal regret of O(m

√
n log(d/m)). However, this forecaster can

only be implemented efficiently for some special decision sets, and can still take Ω(d6) time
to run in the worst case (see [20]). In this paper, we propose an FPL-variant that retains the
near-optimal regret guarantees of O(m3/2

√
d log d), while having nice additional properties

discussed below.
Small regret is not the only desirable feature of an online forecasting algorithm. In many

applications, one would like to define forecasters that do not change their prediction too often.
For instance, consider a sequential routing problem on a computer network where predictions
correspond to selecting a path in a graph for each packet to traverse. In this situation, switching
between routes might result in out-of-order delivery of packets due to changing delays, and
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Regret Switches Efficient
Shrinking Dartboard [21] O(m3/2√n log d) O(

√
mn log d) sometimes

Follow the Lazy Leader [6] O(m3/2√n log d) O(d
√

(n/m) log d) always
Prediction by random-walk perturbations O(m3/2√n log d) O(m

√
n log d) always

TABLE I
THE RESULTS PRESENTED IN THIS PAPER VERSUS THE RESULTS OF [6] AND [21].

eventually lead to decoding errors. Further examples of such problems include the online
buffering problem described by Geulen, Voecking and Winkler [21] and the online lossy
source coding problem of György and Neu [22]. A more abstract problem where the number
of abrupt switches in the behavior is costly is the problem of online learning in Markovian
decision processes, as described by Even-Dar, Kakade and Mansour [23] and Neu, György,
Szepesvári, and Antos [24].

To be precise, define the number of action switches up to time n by

Cn = |{1 < t ≤ n : Vt−1 6= Vt}| .

In particular, we are interested in defining randomized forecasters that achieve a regret Rn

of near-optimal order while keeping the number of action switches Cn as small as possible.
However, the usual forecasters with small regret—such as the exponentially weighted average
forecaster or the FPL forecaster with i.i.d. perturbations—may switch actions a large number
of times, typically Θ(n). Therefore, the design of special forecasters with small regret and
small number of action switches is called for.

The first known algorithm to address this issue is the Follow the Lazy Leader (FLL)
algorithm proposed by Kalai and Vempala [6]. This algorithm is designed to behave identi-
cally to their FPL algorithm in expectation (with an O(m3/2

√
n log d) bound on the regret),

while guaranteeing that the expected number of action switches is O(d
√

(n/m) log d). The
“Shrinking Dartboard” algorithm proposed by Geulen, Voecking and Winkler [21] is based on
a similar idea: this algorithm simulates the exponentially weighted forecaster in expectation,
guaranteeing a regret of O(m3/2

√
n log d), while improving the upper bound on the expected

number of switches to O(
√
mn log d). In this paper, we propose a family of methods based

on FPL in which perturbations are defined by independent symmetric random walks. We show
that these intuitively appealing forecasters have similar regret and switch-number guarantees
as Shrinking Dartboard and FLL.

In particular, we first propose an FPL-variant in which perturbations are generated by inde-
pendent Gaussian random walks for each coordinate of the perturbation vector. We show that
this algorithm guarantees a regret of O(m3/2

√
n log d), while keeping the number of switches

bounded by O(m
√
n log d). While this bound is inferior to that of the Shrinking Dartboard

algorithm by a factor of
√
m log d, that algorithm can only be efficiently implemented for

some special decision sets S—see [10] and [11] for some examples. On the other hand, our
algorithm can be efficiently implemented whenever there exists an efficient implementation
of the static optimization problem of finding arg minv∈S v

>` for any ` ∈ Rd. Notice that our
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Algorithm 1 Online combinatorial optimization by random-walk perturbations.
Initialization: set L0 = 0 and Z0 = 0.
For all t = 1, 2, . . . , n, repeat

1) Draw Xt with i.i.d. Gaussian components

Xi,t ∼ N (0, η2)

2) Let Zt = Zt−1 + Xt.
3) Choose action

Vt = arg min
v∈S

{
v> (Lt−1 + Zt)

}
,

where ties are broken in favor of Vt−1.
4) Observe the loss vector `t, suffer loss V >t `t.
5) Set Lt = Lt−1 + `t.

regret bound only guarantees that the number of switches is of O(
√
n logN) in the setting

of prediction with expert advice. In the second half of the paper, we show that this can
be improved to O(

√
n logN) by using symmetric binary random walks as perturbations. An

interesting property of the resulting algorithm is that the expected regret can be directly upper
bounded in terms of the expected number of switches. We compare our results to other results
known in the literature in Table I.

We also note that a similar variant of the FPL forecaster was recently derived by Rakhlin,
Shamir and Sridharan [25], who use perturbations of the form Zi,t =

∑n
s=t+1Xi,s, where

Xi,s are i.i.d. random variables with an arbitrary symmetric distribution. Rakhlin, Shamir and
Sridharan exploit the fact that these perturbations can serve as a relaxation of the Rademacher
complexity of the prediction game, and prove an O(

√
n logN) bound on the expected regret

of the resulting algorithm. While this approach cannot be used for analyzing our FPL-variant,
our analysis can be directly applied to provide both regret and switch-number guarantees for
their method. Additionally, note that our algorithm does not need to use prior knowledge of
the number of rounds.

II. RANDOM-WALK PERTURBATIONS FOR ONLINE COMBINATORIAL OPTIMIZATION

To address the problem described in the previous section, we propose a variant of the Follow
the Perturbed Leader (FPL) algorithm. The proposed forecaster perturbs the loss of each action
at every time instant by a zero-mean Gaussian random variable with variance η2 > 0 and
chooses an action with minimal cumulative perturbed loss. More precisely, the algorithm
draws independent random variables Xi,t ∼ N (0, η2) and the vector Xt = (X1,t, . . . , Xd,t)

is added to the observed loss vector `t−1. At time t action v ∈ S is chosen that minimizes∑t
s=1 v

> (`t−1 + Xt) (where we define `0 as the all-zero vector 0). Equivalently, the forecaster
may be thought of as an FPL algorithm in which the cumulative losses Lt−1 are perturbed
by the independent symmetric random walks Zt =

∑t
s=1 Xs. This is the way the algorithm

is presented in Algorithm 1.
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Conceptually, the difference between standard FPL and the proposed version is the way
the perturbations are generated: while common versions of FPL use perturbations that are
generated in an i.i.d. fashion, the perturbations of the algorithm proposed here are dependent.
This will enable us to control the number of action switches during the learning process.
Note that the standard deviation of these perturbations at time t is still of order

√
t just like

for the standard FPL forecaster with optimal parameter settings.
To obtain intuition why this approach will solve our problem, first consider a problem with

action set S =
{

(1, 0)>, (0, 1)>
}

and an environment that generates equal losses, say `i,t = 0

for all i and t. When using i.i.d. perturbations, FPL switches actions with probability 1/2 in
each round, thus yielding Ct = t/2 +O(

√
t) with overwhelming probability. The same holds

for the exponentially weighted average forecaster. On the other hand, when using the random-
walk perturbations described above, we only switch between the actions when the leading
random walk is changed, that is, when the difference of the two random walks—which is also
a symmetric random walk—hits zero. This distribution is well understood and the probability
that this occurs more than x

√
n times during the first n steps is roughly 2P{N > 2x} ≤ 2e−2x2

where N is a standard normal random variable (see [26, Section III.4]). Thus, in this case
we see that the number of switches is bounded by O

(√
n log(1/δ)

)
, with probability at

least 1− δ. As we show below, assuming all-zero losses is the worst case for the number of
switches.

Even though we only prove bounds for the expected regret and the expected number of
switches, the above example gives some intuition about the upper tail probabilities. While the
above idea can be extended to the case of non-zero loss sequences to obtain high-confidence
switch-number guarantees, proving similar results for the general setting is a highly nontrivial
problem. We note that by our Lemma 2 (stated later in Section III), the regret of our algorithm
can be directly bounded in terms of the number of switches, thus we can guarantee upper
bounds of O(

√
n) on both Cn and Rn with high probability. We are not aware of any other

algorithm that provides high-confidence guarantees on both quantities of interest even in this
simple special case.

The next theorem bounds the performance of the proposed forecaster. We are not only
interested in the regret but also the number of switches Cn =

∑n
t=1 1 {Vt+1 6= Vt}. The regret

is of similar order as that of the standard FPL forecaster, up to an additive logarithmic factor.
Moreover, the expected number of switches is O (m

√
n log d). Remarkably, the dependence

on d is only logarithmic and it is the weight m of the actions that plays an important role.
Theorem 1: The expected regret and the expected number of action switches satisfy (under

the oblivious adversary model),

EL̂n − L∗n ≤ m
√

2n log d

(
2m

η
+ η

)
+
m2(log n+ 1)

η2
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and

E
n∑
t=1

1 {Vt+1 6= Vt} ≤
n∑
t=1

m
(
1 + 2η

√
2 log d+ η2

(
2 log d+

√
2 log d+ 1

))
4η2t

+
n∑
t=1

m
(
1 + η

√
2 log d

)√
2 log d

η
√
t

.

In particular, setting η =
√

2m yields

EL̂n − L∗n ≤ 4m3/2
√
n log d+

m(log n+ 1)

2
.

and

E
n∑
t=1

1 {Vt+1 6= Vt} = O
(
m
√
n log d

)
.

The proof of the regret bound follows the steps of the proof of Theorem 1 in [19], and
is deferred to the appendix. The more interesting part is the bound for the expected number
of action switches E

∑n
t=1 1 {Vt+1 6= Vt} =

∑n
t=1 P [Vt+1 6= Vt]. For proving a bound on

this quantity, we study the evolution of the lead pack At defined as the set of actions with
near-optimal loss given by

At =
{
w ∈ S : (w − Vt)

>(Lt−1 + Zt) ≤ ‖w − Vt‖1 · ‖`t + Xt+1‖∞
}
. (1)

We sometimes refer to ‖`t + Xt+1‖∞ as the diameter of the lead pack. Observe that no action
outside At can take the lead at time t+ 1, since if w 6∈ At, then

(w − Vt)
>(Lt−1 + Zt) >

∣∣(w − Vt)
>(`t + Xt+1)

∣∣
so w>(Lt + Zt+1) > V >t (Lt + Zt+1) and w cannot be the new leader. It follows that we
can upper bound the probability of switching as

P [Vt+1 6= Vt] ≤ P [|At| > 1] ,

which leaves us with the problem of upper bounding P [|At| > 1]. The following lemma
gives a bound of this quantity. Putting this statement together with the well-known facts that
E [‖X1‖∞] ≤ η

√
2 log d and E [‖X1‖2

∞] ≤ η2
(
2 log d+

√
2 log d+ 1

)
(see, e.g., [27]) proves

the second statement of the theorem.
Lemma 1: For each t = 1, 2, . . . , n,

P [|At| > 1 |Xt+1 ] ≤ m ‖`t + Xt+1‖2
∞

2η2t
+
m ‖`t + Xt+1‖∞

√
2 log d

η
√
t

.

Proof: We use the notation Pt [·] = P [· |Xt+1 ] and Et [·] = E [· |Xt+1 ]. Also, let

ht = `t + Xt+1 and Ht =
t−1∑
s=0

hs.

Furthermore, we use the shorthand notation c = ‖ht‖∞.
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We start by analyzing Pt [|At| = 1]:

Pt [|At| = 1] =
∑
v∈S

Pt
[
∀w 6= v : (w − v)>Ht > ‖w − v‖1 c

]
=
∑
v∈S

∫
y∈R

fv(y)Pt
[
∀w 6= v : w>Ht > y + ‖w − v‖1 c

∣∣v>Ht = y
]
dy,

(2)

where fv is the distribution of v>Ht. Next we crucially use the fact that the conditional
distributions of correlated Gaussian random variables are also Gaussian. In particular, defining
k(w,v) = (m− ‖w − v‖1), the covariances are given as

cov
(
w>Ht,v

>Ht

)
= η2(m− ‖w − v‖1)t = η2k(w,v)t.

Let us organize all actions w ∈ S\v into a matrix W = (w1,w2, . . . ,wN−1). The conditional
distribution of W>Ht is an (N − 1)-variate Gaussian distribution with mean

µv(y) =

(
w>1 Lt−1 + y

k(w1,v)

m
,w>2 Lt−1 + y

k(w2,v)

m
, . . . ,w>N−1Lt−1 + y

k(wN−1,v)

m

)>
and covariance matrix Σv, given that v>Ht = y. Defining K = (k(w1,v), . . . , k(wN−1,v))>

and using the notation ϕ(x) = 1√
(2π)N−1|Σv |

exp(−x2

2
), we get that

Pt
[
∀w 6= v : w>Ht > y + ‖w − v‖1 c

∣∣v>Ht = y
]

=

∞∫
· · ·
∫

zi=y+(m−k(wi,v))c

ϕ
(√

(z − µv(y))>Σ−1
v (z − µv(y))

)
dz

=

∞∫
· · ·
∫

zi=y+mc

ϕ

(√
(z − µv(y)− cK)>Σ−1

v (z − µv(y)− cK)

)
dz

=

∞∫
· · ·
∫

zi=y+mc

ϕ

(√
(z − µv(y +mc))>Σ−1

v (z − µv(y +mc))

)
dz

= Pt
[
∀w 6= v : w>Ht > y +mc

∣∣v>Ht = y +mc
]
,

where we used µv(y +mc) = µv(y) + cK. Using this, we rewrite (2) as

Pt [|At| = 1] =
∑
v∈S

∫
y∈R

fv(y)Pt
[
∀w 6= v : w>Ht > y

∣∣v>Ht = y
]
dy

−
∑
v∈S

∫
y∈R

(
fv(y)− fv(y −mc)

)
Pt
[
∀w 6= v : w>Ht > y

∣∣v>Ht = y
]
dy

=1−
∑
v∈S

∫
y∈R

(
fv(y)− fv(y −mc)

)
Pt
[
∀w 6= v : w>Ht > y

∣∣v>Ht = y
]
dy.
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To treat the remaining term, we use that v>Ht is Gaussian with mean v>Lt−1 and variance
η2mt to obtain

fv(y)− fv(y −mc) =fv(y)

(
1− fv(y −mc)

fv(y)

)
≤fv(y)

(
mc2

2η2t
− c(y − v>Lt−1)

η2t

)
.

Thus,

Pt [|At| > 1] ≤
∑
v∈S

∫
y∈R

(
fv(y)− fv(y −mc)

)
Pt
[
∀w 6= v : w>Ht > y

∣∣v>Ht = y
]
dy

≤
∑
v∈S

∫
y∈R

fv(y)

(
mc2

2η2t
− c(y − v>Lt−1)

η2t

)
Pt
[
∀w 6= v : w>Ht > y

∣∣v>Ht = y
]
dy

=
mc2

2η2t
−
cE
[
V >t Zt

]
η2t

≤ mc2

2η2t
+
mcE [‖Zt‖∞]

η2t
.

Using the definition of c and E [‖Zt‖∞] ≤ η
√

2t log d gives the result.

III. RANDOM-WALK PERTURBATIONS FOR PREDICTION WITH EXPERT ADVICE

In this section we refine our method to obtain bounds of optimal order in the special
case of prediction with expert advice, that is, when the set of actions is the set of d = N

unit vectors. While the straightforward application of Algorithm 1 and Theorem 1 guarantees
a regret of optimal order in this case, the switch-number guarantees are of a suboptimal
O(
√
n logN). In this section, we propose a variant of our algorithm that achieves order-

optimal regret guarantees while switching its predictions only O(
√
n logN) times, similarly

to the algorithms of [6] and [21].
The algorithm—presented as Algorithm 2—is obtained by replacing the Gaussian incre-

ments in Algorithm 1 by independent random variables that take values ±1/2 with equal
probabilities. The benefit of using this perturbation scheme is that the diameter of the lead
packs defined in (1) can be upper bounded by a constant, and thus we can eliminate higher
moments of ‖Xt+1‖∞ in the upper bound on P [|At| > 1]. To gain further intuition, notice
that choosing any fixed (i.e., non-random) lead-pack diameter in the proof of Lemma 1 would
allow experts from outside the lead pack to take the lead with positive probability. While this
probability can be decreased at the expense of slightly expanding the diameter, its rate of
decay is not sufficiently fast for improving our previously presented results. In fact, balancing
the two terms constituting the probability of switching gives the exact same result. On the
other hand, when using ±1/2-valued random increments, it is possible to set a fixed diameter
of 1 that ensures that the new leader comes from the lead pack with probability 1, and thus
the extra term vanishes.

The next theorem summarizes our performance bounds for the proposed forecaster.
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Algorithm 2 Random-walk perturbations for prediction with expert advice.
Initialization: set Li,0 = 0 and Zi,0 = 0 for all i = 1, 2, . . . , N .
For all t = 1, 2, . . . , n, repeat

1) Draw Xi,t for all i = 1, 2, . . . , N such that

Xi,t =

{
1
2

with probability 1
2

−1
2

with probability 1
2
.

2) Let Zi,t = Zi,t−1 +Xi,t for all i = 1, 2, . . . , N .
3) Choose action

It = arg min
i

(Li,t−1 + Zi,t) ,

where ties are broken in favor of It−1.
4) Observe losses `i,t for all i = 1, 2, . . . , N , suffer loss `It,t.
5) Set Li,t = Li,t−1 + `i,t for all i = 1, 2, . . . , N .

Theorem 2: The expected regret and expected number of switches of actions of the fore-
caster of Algorithm 2 satisfy, for all possible loss sequences (under the oblivious-adversary
model),

ERn ≤ 2ECn ≤ 8
√

2n logN + 16 log n+ 16 .

While it is possible to perform the analysis of Algorithm 2 similarly to that of Algorithm 1,
we take a different path: The proof we present below is based on the observation that the
regret of Algorithm 2 can be bounded in terms of the number of action switches. The next
simple lemma formalizes this statement.

Lemma 2: Fix any i ∈ {1, 2, . . . , N}. Then

L̂n − Li,n ≤ 2Cn + Zi,n+1 −
n+1∑
t=1

XIt−1,t .

Proof: We apply Lemma 3.1 of [1] (sometimes referred to as the “be-the-leader” lemma)
for the sequence (`·,t−1 +X·,t)

∞
t=1 with `j,0 = 0 for all j ∈ {1, 2, . . . , N}, obtaining

n+1∑
t=1

(`It,t−1 +XIt,t) ≤
n+1∑
t=1

(`i,t−1 +Xi,t)

= Li,n + Zi,n+1 .

Reordering terms, we get
n∑
t=1

`It,t ≤ Li,n +
n+1∑
t=1

(
`It−1,t−1 − `It,t−1

)
+ Zi,n −

n+1∑
t=1

XIt,t . (3)

The last term can be rewritten as

−
n+1∑
t=1

XIt,t = −
n+1∑
t=1

XIt−1,t +
n+1∑
t=1

(
XIt−1,t −XIt,t

)
.
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Now notice that XIt−1,t − XIt,t and `It−1,t−1 − `It,t−1 are both zero when It = It−1 and are
upper bounded by 1 otherwise. That is, we get that

n+1∑
t=1

(
`It−1,t−1 − `It,t−1

)
+

n+1∑
t=1

(
XIt−1,t −XIt,t

)
≤ 2

n+1∑
t=1

1 {It−1 6= It} = 2Cn .

Putting everything together gives the statement of the lemma.
Next we analyze the number of switches Cn. Similarly to the analysis of Algorithm 1, we

study the lead pack At defined as

At =

{
i ∈ {1, 2, . . . , N} : Li,t−1 + Zi,t < min

j
(Lj,t−1 + Zj,t) + 2

}
,

where we assumed that ties are broken in favor of It−1. Once again, observe that no action
from outside the lead pack has a positive probability of taking the lead at time t + 1. We
bound the probability of lead change as

P [It 6= It+1] ≤ 1

2
P [|At| > 1] .

The key to the proof of the theorem is the following lemma that gives an upper bound for
the probability that the lead pack contains more than one action. It implies, in particular, that

E [Cn] ≤ 4
√

2n logN + 4 log n+ 4 ,

which is what we need to prove the expected-value bounds of Theorem 2.
Lemma 3:

P [|At| > 1] ≤ 4

√
2

logN

t
+

8

t
.

Proof: Define pt(k) = P
[
Zi,t = k

2

]
for all k = −t, . . . , t and we let St denote the set of

leaders at time t (so that the forecaster picks It ∈ St arbitrarily):

St =
{
j ∈ {1, 2, . . . , N} : Lj,t−1 + Zj,t = min

i
{Li,t−1 + Zi,t}

}
.

The forecaster picks It ∈ St arbitrarily when It−1 6∈ St, otherwise it stays with It = It−1. Let
us start with analyzing P [|At| = 1]:

P [|At| = 1] =
t∑

k=−t

N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2
+ 2

]

≥
t−4∑
k=−t

N∑
j=1

pt(k + 4)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k + 4

2

]
pt(k)

pt(k + 4)

=
t∑

k=−t+4

N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2

]
pt(k − 4)

pt(k)
.
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Before proceeding, we need to make two observations. First of all,
N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2

]
≥ P

[
∃j ∈ St : Zj,t =

k

2

]
≥ P

[
min
j∈St

Zj,t =
k

2

]
,

where the first inequality follows from the union bound and the second from the fact that the
latter event implies the former. Also notice that t+Z1,t

2
is binomially distributed with parameters

t and 1/2 and therefore pt(k) =
(

t
t+k
2

)
1
2t

. Hence

pt(k − 4)

pt(k)
=

(
t+k

2

)
!
(
t−k

2

)
!(

t+k
2
− 2
)
!
(
t−k

2
+ 2
)
!

= 1 +
4(t+ 1)(k − 2)

(t− k + 2)(t− k + 4)
.

It can be easily verified that
4(t+ 1)(k − 2)

(t− k + 2)(t− k + 4)
≥ 4(t+ 1)(k − 2)

(t+ 2)(t+ 4)

holds for all k ∈ [−t, t]. Using our first observation, we get

P [|At| = 1] ≥
∑
j

t∑
k=−t+4

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2

]
pt(k − 4)

pt(k)

≥
t∑

k=−t+4

P
[
min
j∈St

Zj,t =
k

2

]
pt(k − 4)

pt(k)
.

Along with our second observation, this implies

P [|At| > 1] ≤1−
t∑

k=−t+4

P
[
min
j∈St

Zj,t =
k

2

]
pt(k − 4)

pt(k)

≤1−
t∑

k=−t+4

P
[
min
j∈St

Zj,t =
k

2

](
1 +

4(t+ 1)(k − 2)

(t+ 2)(t+ 4)

)

≤
t∑

k=−t

P
[
min
j∈St

Zj,t =
k

2

](
4(2− k)(t+ 1)

(t+ 2)(t+ 4)

)
=

8(t+ 1)

(t+ 2)(t+ 4)
− 8

t+ 1

(t+ 2)(t+ 4)
E
[
min
j∈St

Zj,t

]
≤8

t
+

8

t
E
[

max
j∈{1,2,...,N}

Zj,t

]
.

Now using E [maxj Zj,t] ≤
√

t logN
2

implies

P [|At| > 1] ≤ 4

√
2 logN

t
+

8

t
as desired.



13

APPENDIX

Proof of the first statement of Theorem 1: The proof is based on the proof of Theorem 4.2
of [1] and Theorem 3 of [12], with key insights taken from Neu and Bartók [19]. The main
difference from those proofs is that the standard deviation of our perturbations changes over
time, however, this issue is easy to treat. First, we define an infeasible “forecaster” that peeks
one step into the future and uses perturbation Ẑt =

√
tX1:

V̂t = arg min
w∈S

w>
(
Lt + Ẑt

)
.

Now fix any v ∈ S. Applying Lemma 3.1 of [1] for the sequence (`t−1 + Ẑt− Ẑt−1)∞t=1 with
`0 = 0, we get

n∑
t=1

V̂ >t (`t + (Ẑt − Ẑt−1)) ≤ v>(Ln + Ẑn).

After reordering, we obtain
n∑
t=1

V >t `t ≤ v>Ln + v>Ẑn +
n∑
t=1

(Vt − V̂t)
>`t −

n∑
t=1

V̂ >t (Ẑt − Ẑt−1)

= v>Ln + v>Ẑn +
n∑
t=1

(Vt − V̂t)
>`t +

n∑
t=1

(
√
t− 1−

√
t)V̂ >t X1

The last term can be bounded as
n∑
t=1

(
√
t− 1−

√
t)V̂ >t X1 ≤

n∑
t=1

(
√
t−
√
t− 1)

∣∣∣V̂ >t X1

∣∣∣
≤m

n∑
t=1

(
√
t−
√
t− 1) ‖X1‖∞

≤m
√
n ‖X1‖∞ .

Taking expectations, we obtain the bound

E
[
L̂n

]
− v>Ln ≤

n∑
t=1

E
[
(Vt − V̂t)

>`t

]
+ ηm

√
2n log d,

where we used E [‖X1‖∞] ≤ η
√

2 log d.
Thus, we are left with the problem of bounding E

[
(Vt − V̂t)

>`t

]
for each t ≥ 1. Similarly

to [19], we do this by introducing

pt(u) = P [Vt = u] = P
[
V̂t−1 = u

]
for all u ∈ S and studying the relationship between the distributions pt and pt+1. To this
end, let us fix an arbitrary u ∈ S and define the “sparse loss vector” ˜̀

t(u) with its k-th
component being ˜̀

k,t(u) = uk`k,t. Let

Ṽt(u) = arg min
w∈S

w>
(
Lt−1 + ˜̀

t(u) + Ẑt

)
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and
p̃t(u) = P

[
Ṽt(u) = u

]
.

As shown in Lemma 2 of [19], p̃t(u) ≤ pt+1(u) holds independently of the distribution of
the perturbations, given that all components of the loss vector are nonnegative. Now define

wt(z) = arg min
w∈S

w>(Lt−1 + z)

for all z ∈ Rd and let ft(z) be the density of Zt (which coincides with the density of Ẑt).
For all u ∈ S, we have

pt(u) =E [1 {wt(Zt) = u}]

=

∫
z∈Rd

ft(z)1 {wt(z) = u} dz

=

∫
z∈Rd

ft(z + ˜̀
t(u))1

{
wt(z + ˜̀

t(u)) = u
}
dz

=E
[
1

{
wt(Ẑt + ˜̀

t(u)) = u
}]

+

∫
z∈Rd

(
ft(z + ˜̀

t(u))− ft(z)
)
1 {wt(z) = u} dz

=p̃t(u) +

∫
z∈Rd

(
ft(z + ˜̀

t(u))− ft(z)
)
1 {wt(z) = u} dz .

While the first term is upper bounded by pt+1(u), the last one can be upper bounded as∫
z∈Rd

ft(z)

(
1− exp

(
(z − ˜̀

t(u))> ˜̀
t(u)

η2t

))
1 {wt(z) = u} dz

≤ −
∫

z∈Rd

ft(z)

(
(z − ˜̀

t(u))> ˜̀
t(u)

η2t

)
1 {wt(z) = u} dz

≤
pt(u)

∥∥ ˜̀
t(u)

∥∥2

2

η2t
+

1

η2t

∫
z∈Rd

ft(z)
∣∣z> ˜̀

t(u)
∣∣1 {wt(z) = u} dz

≤ pt(u)m

η2t
+

m

η2t

∫
z∈Rd

ft(z) ‖z‖∞ 1 {wt(z) = u} dz,

where we have used that
∥∥ ˜̀

t(u)
∥∥2

2
≤ m and

∥∥ ˜̀
t(u)

∥∥
1
≤ m hold by the definition of ˜̀

t(u).
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Using that P
[
V̂t = u

]
= pt+1(u), we obtain

E
[
V >t `t

]
=
∑
u∈S

pt(u)u>`t ≤
∑
u∈S

pt+1(u)u>`t

+
∑
u∈S

pt(u)m

η2t
+

m

η2t

∫
z∈Rd

ft(z) ‖z‖∞ 1 {wt(z) = u} dz

u>`t

≤E
[
V̂ >t `t

]
+
m2

η2t
+
m2

η2t

∫
z∈Rd

ft(z) ‖z‖∞
∑
u∈S

1 {wt(z) = u} dz

=E
[
V̂ >t `t

]
+
m2

η2t
+
m2

η2t
E [‖Zt‖∞]

≤E
[
V̂ >t `t

]
+
m2

η2t
+
m2

η

√
2 log d

t
,

where we used E [‖Zt‖∞] ≤ η
√

2t log d in the last step.
Putting everything together, we obtain

E
[
L̂n

]
− v>Ln ≤

n∑
t=1

m2

η2t
+

n∑
t=1

m2

η

√
2 log d

t
+ ηm

√
2n log d

≤ 2m2
√

2n log d

η
+ ηm

√
2n log d+

m2(log n+ 1)

η2
.
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