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Stochastic multi-armed bandits

Protocol
Repeat for t = 1, 2, . . . , T :
Learner plays action It ∈ {1, . . . , K}.
Environment generates rewards Xt,i ∼ νi.
Learner gains and observes reward Xt,It.

Notation:
mean rewards: µi = E [Xt,i]

best arm: i∗ = argmaxi∈[K]µi
mean reward of best arm: µ∗ = maxi∈[K]µi
suboptimality gaps: ∆i = µ∗ − µi
number of draws of arm i until round t: Nt,i

GOAL: minimize regret

RT = µ
∗T −

T∑
t=1

E [Xt,It] =
K∑
i=1

∆iE [NT,i]

Assumption: σ2-subgaussian rewards
E

ey(Xt,i−E[Xt,i])
 ≤ eσ2y2/2

Lower bound: For Gaussian rewards:

RT &
∑
i 6=i∗

σ2 log T
∆i

RT & σ
√
KT

The elephant in the room

Boltzmann exploration
Initialize: µ̂1,i = 0 for all i ∈ [K].
Repeat for t = 1, 2, . . . , T :

Compute distribution
pt,i ∝ eηtµ̂t,i.

Play action It ∼ pt and observe rt,It.
Update empirical means

µ̂t,i =

∑t
s=1Xs,iI{Is = i}

Nt,i
.

Broadly used exploration strategy in RL, but
very little theory to support it!

Boltzmann exploration done wrong

Main result
For any monotone sequence of learning
rates ηt, Boltzmann exploration will suffer
suboptimal regret.

Two regimes with no middle ground:

ηt grows too slowly ⇒ too much time on
exploration / too slow to zoom in on i∗

ηt grows too quickly ⇒ high probability of
missing i∗

Proposition 1: over-exploration
Regret on any 2-armed bandit problem with

known means:
ηt =

log(t∆2)
∆
⇒ RT ≈ log T

∆
.

ηt =
log(t∆2)
(1+α)∆ ⇒ RT ≈ T

α
(1+α) ·

 1
∆


1−α
1+α.

Proof idea:

RT =
T∑
t=1

P [It = 2] =
T∑
t=1

1

1+ eηt∆
≥

T∑
t=1

e−ηt∆

2

=
1

2

T∑
t=1

t∆2

1+α

≈

log T
∆
, if α = 0,

T
α

(1+α) ·
 1
∆


1−α
1+α , if α > 0.

Proposition 2: under-exploration
There exists a 2-armed stochastic bandit

problem where BE using any ηt > 2 log t has
regret RT = Ω(T).

Proof idea:

Two arms: Xt,2 = 1
2
and

Xt,1∼Bernoulli
1
2
+ ∆



Bad event:
E0 = {arm 1 gives 0 reward in first t0 rounds}
Under E0, BE will not draw arm 1 after
round t0 due to ηt growing too fast
P [E0] ≥

1
2
− ∆

t0 = const.

A quick fix

Theorem
Let τ = 16eK log T

∆2
. Then the regret of BE with

the learning rate sequence
ηt = I{t < τ}+ log(t∆2)

∆
I{t ≥ τ} satisfies

RT ≤
16eK log T

∆2
+
9K

∆2
.

near-optimal performance guarantees ,
requires prior knowledge of ∆ and T ///

Boltzmann exploration done right

What’s wrong with Boltzmann
exploration?

It doesn’t reason about uncertainty of
reward estimates!

Our solution: arm-dependent learning
rates!
Key tool: “Gumbel–softmax trick”

It = argmax
i∈[K]

{µ̂t,i + Zt,i} ,

follows Boltzmann distribution if Zt,i are
i.i.d. standard Gumbel random variables.
Idea: account for uncertainty by scaling Zt,i
differently for each arm!

Boltzmann–Gumbel exploration
Initialize: µ̂1,i = 0 for all i ∈ [K].
Repeat for t = 1, 2, . . . , T :

Draw Zt,i i.i.d. from standard Gumbel
distribution.
Play action

It = argmax
i∈[K]

{
µ̂t,i +

√√√√√√√√√√√√√
C2

Nt,i
· Zt,i

}
Observe rt,It and update empirical means

µ̂t,i =

∑t
s=1Xs,iI{Is = i}

Nt,i

Analysis

Theorem
For σ2-subgaussian rewards, the regret of
BGE with C = σ satisfies

RT .
∑
i 6=i∗

σ2log2
T∆2i/σ

2


∆i
RT . σ

√
KT logK

Proof sketch:

Let βt,i =
√√√√√C2/Nt,i and µ̃t,i = µ̂t,i + βt,iZt,i

Set thresholds xi = µi + ∆
3
and yi = µ1 − ∆

3

Key events:
Eµ̂t,i = {µ̂t,i ≤ xi} ∼ arm i well-estimated
Eµ̃t,i = {µ̃t,i ≤ yi} ∼ small perturbation on arm i

E [Nt,i] decomposed into 3 terms:∑T
t=1P

It = i, E
µ̃
t,i, E

µ̂
t,i

 ∼ interaction between
perturbations Zt,1 and fluctuations of µ̂t,1∑T
t=1P

It = i, E
µ̃
t,i, E

µ̂
t,i

 ∼ large perturbations∑T
t=1P

It = i, E
µ̂
t,i

 ∼ large deviations

First and last terms bounded by
T−1∑
k=0

E
exp


µi − µ̂τk,i
βτk,i



e
−
∆i
√
k

3C ≤ eσ2/2C2 ·
T−1∑
k=1

e−
∆i
√
k

3C

≤ 18C
2eσ

2/2C2

∆2i

Middle term bounded by
9C2 log2+

T∆2i/c
2

 + c2eγ

∆2i

for any c > 0
Technique extends to other subgaussian
mean estimators for heavy-tailed rewards

Empirical illustration

Sensitivity of BGE and BE with learning rates
ηt = C, ηt = C/ log t, ηt = C/

√
t to various

settings of C:
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