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Abstract
We consider the problem of computing optimal policies in average-reward Markov decision processes. This
classical problem can be formulated as a linear program directly amenable to saddle-point optimization
methods, albeit with a number of variables that is linear in the number of states. To address this issue,
recent work has considered a linearly relaxed version of the resulting saddle-point problem. Our work aims
at achieving a better understanding of this relaxed optimization problem by characterizing the conditions
necessary for convergence to the optimal policy, and designing an optimization algorithm enjoying fast
convergence rates that are independent of the size of the state space. Notably, our characterization points
out some potential issues with previous work.

1. Introduction

Computing optimal policies in Markov decision processes (MDPs) is one of the most important problems
in sequential decision making and control (Puterman, 1994). Arguably, the most classical approach to
solve this task is through the method of dynamic programming, understood in this context as computing
fixed points of certain operators (Bellman, 1957; Howard, 1960; Bertsekas, 2007). The use and influence of
dynamic-programming methods like value and policy iteration extend well beyond the world of decision
and control theory, as the underlying ideas serve as foundations for most algorithms for learning optimal
policies in unknown MDPs: the setting of reinforcement learning (Szepesvári, 2010; Sutton and Barto, 2018).
While being hugely successful, DP-based methods have the downside of being somewhat incompatible
with classical machine-learning tools that are rooted in convex optimization. Indeed, most of the popular
reductions of dynamic programming to (non-)convex optimization are based on heuristics that are not
directly motivated by theory. Examples include the celebrated DQN approach of Mnih et al. (2015) that
reduces value-function estimation to minimizing the “squared Bellman error”, or the TRPO algorithm
of Schulman et al. (2015) that reduces policy updates to minimizing a “regularized surrogate objective”.
While these methods can be justified to a certain extent, it is technically unknown if solving the resulting
optimization problems actually leads to a desirable solution to the original sequential decision-making
problem.

In this paper, we explore a family of methods that reduce MDP optimization to a form of convex
optimization in a theoretically grounded way. Our starting point is an alternative approach based on linear
programming (LP), first proposed roughly at the same time as the DP methods of Bellman (1957); Howard
(1960): the idea of LP-based methods for sequential decision-making goes back to the works of de Ghellinck
(1960); Manne (1960); Denardo (1970). While LP-based methods seem to be more obscure in present day
than DP methods, they have the clear advantage that they lead to an objective function directly amenable
to modern large-scale optimization methods. Recent reinforcement-learning methods inspired by the
LP perspective include policy-gradient and actor-critic methods (Sutton et al., 1999; Konda and Tsitsiklis,
1999) and various “entropy-regularized” learning algorithms (e.g., Peters et al., 2010; Zimin and Neu, 2013;
Neu et al., 2017). While these methods promise to directly tackle the policy-optimization problem through
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solving the underlying linear program, most of them still require the computation of certain value functions
through dynamic programming.

In the present work, we argue for the viability of a method fully based on a form of convex optimization,
rooted in the LP approach. Our approach is based on a bilinear saddle-point formulation of the linear
program, building on a well-known general equivalence between the two optimization problems. One par-
ticular advantage of this formulation is that it enables a straightforward form of dimensionality reduction
of the original problem through a linear parametrization of the optimization variables, which provides a
natural framework for studying effects of “function approximation” in the underlying policy optimization
problem. Our main contribution regarding this setting lies in characterizing a set of assumptions that allow
a reduced-order saddle-point representation of the optimal policy. These include a realizability assumption
and a newly identified coherence assumption about the subspaces used for approximation. Our main
positive result is showing that these conditions are sufficient for constructing an algorithm that outputs
an ε-optimal policy with runtime guarantees of Õ

(
τ2

mixN 3/ε
)
, where N is the number of variables in the

relaxed optimization problem, and τmix is a notion of mixing time. Our approach is based on the celebrated
Mirror Prox algorithm of Nemirovski (2004) (see also Korpelevich, 1976). We complement our positive
results by showing that our newly defined coherence assumption is necessary for the relaxed saddle-point
approach to be viable: we construct a simple example violating the assumption, where achieving full
optimality on the relaxed problem leads to a suboptimal policy.

We are not the first to consider saddle-point methods for optimization in Markov decision processes.
Wang (2017) proposed variants of Mirror Descent to solve the original saddle-point problem without
relaxations and provide runtime guarantees of Õ

(
(ατmix)2 |X||A|/ε2

)
, where X and A are the finite state

and action spaces, and α is a parameter that characterizes the uniformity of the stationary distributions of
every policy. Specifically, their assumption implies1 that for the stationary distribution dπ any policy π, one
has maxx dπ(x)

minx′ dπ(x′) ≤α. In most cases of practical interest, this ratio is at least as large as |X| (e.g., when there

are states that some policies visit with constant probability), and can easily be exponentially large in |X|,
or even infinite if the underlying MDP has transient states. When specialized to this setting, our bounds
replace α2 by the much more manageable |X| and also improve the dependence on ε from 1/ε2 to 1/ε. One
downside of our method is that we need full access to the transition probabilities of the MDP, whereas the
algorithm of Wang (2017) only requires a generative model.

The linearly relaxed saddle-point problem we consider was first studied by Lakshminarayanan et al.
(2018) and Chen et al. (2018). Our runtime guarantees improve over the ones claimed by Chen et al. (2018)
in a similar way as our first set of results improve over those of Wang (2017). Notably, their results still
feature a factor of α2, which generally depends on the size of the original state space rather than the
number of features, rendering these guarantees void of meaning in very large state spaces. In contrast, our
bounds replace this factor by the number of features N . Furthermore, our characterization highlighting the
importance of the coherence assumption discussed above hints at some potential technical issues with the
results of Chen, Li, and Wang (2018), who claimed convergence to the optimal policy without the coherence
assumption.

The rest of the paper is organized as follows. After providing background on the saddle-point formula-
tion of MDP optimization in Section 2, we describe the relaxed saddle-point problem in Section 3. Section 4
presents our algorithm and its performance guarantees, and Section 5 provides a sketch of the proofs. We
conclude by providing a simple numerical illustration of our method in Section 6 and discuss our results in
Section 7.

Notation. Inner products over vector spaces will be denoted by 〈·, ·〉. We use ∆S to denote the set of
probability distributions on the finite set S: ∆S = {

p ∈RS+ :
∑

s∈S p(s) = 1
}
. Sums spanning over the spaces

x ∈X and a ∈A will be simply denoted by
∑

x or
∑

a .

1. The actual assumption made by Wang (2017) is even more restrictive.
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2. Preliminaries

Consider an undiscounted Markov decision process M = (X,A,P,r ), where X is the finite state space, A is
the finite action space, P is the transition function with P (x ′|x, a) denoting the probability of moving to
state x ′ ∈X from state x ∈X when taking action a ∈A and r is the reward function mapping state-action
pairs to rewards with r (x, a) denoting the reward of being in state x and taking action a. We assume that
r (x, a) ∈ [0,1] for all x, a. In each round t , the learner observes state xt ∈X, selects action at ∈A, moves to
the next state xt+1 ∼ P (·|xt , at ), and obtains reward r (xt , at ).

In this paper we focus on the infinite-horizon average-reward scenario where the goal of the learner is to
select its actions at in a way that maximizes the average reward per time step, liminft→∞E

[ 1
T

∑T
t=1 rt (xt , at )

]
.

We will work with randomized stationary policies with π(a|x) denoting the probability of taking action
a in state x. Under technical assumptions discussed shortly, each such policy π generates a unique sta-
tionary state distribution dπ ∈∆X over the state space satisfying dπ(x) = limt→∞P [xt = x] for all x when
the trajectory (xt )t is generated by following policy π. Similarly, each policy π generates a stationary
state-action distribution µπ ∈ ∆X×A satisfying µπ(x, a) = limt→∞P [xt = x, at = a] = dπ(x)π(a|x). Given
these definitions, it can be easily shown that the average-reward of a policy π can be written as

ρπ = lim inf
t→∞Eπ

[
1

T

T∑
t=1

rt (xt , at )

]
=∑

x,a
µ(x, a)r (x, a),

where the notation Eπ [·] indicates that the trajectory (xt , at )t was generated by following policy π: at ∼
π(·|xt ) and xt+1 ∼ P (·|xt , at ). Under our assumptions, the optimal policy can be shown to be a stationary
one; we will denote its average reward as ρ∗ = maxπρπ. Thus, one can show that finding the optimal policy
is equivalent to solving the following linear program:

maximize
∑
x,a
µ(x, a)r (x, a)

s.t. µ ∈∆X×A,
∑
a′
µ(x ′, a′) =∑

x,a
P (x ′|x, a)µ(x, a) (∀x ′ ∈X).

To simplify our notation, we will represent µ and r by |X×A|-dimensional vectors and also define the
|X×A|×|X|-dimensional matrix Q with entries Q(x,a),x′ = P (x ′|x, a)− I{x ′=x}. Then, one can easily see2 that
solving the linear program stated above is equivalent to finding the following saddle point:

min
v∈R|X|

max
µ∈∆

L(v,µ) = min
v∈R|X|

max
µ∈∆

〈
µ,Qv

〉+〈
µ,r

〉
. (1)

Here, we introduced the Lagrangian function L and the shorthand ∆=∆X×A. Optimal solutions (v∗,µ∗)
to the above saddle-point problem are easily seen to correspond to the stationary distribution µ∗ of the
optimal policy and the optimal differential value function v∗ (also known as the optimal bias function,
cf. Puterman, 1994). Besides the full saddle-point optimization problem, we will consider a relaxed version
based on the introduction feature maps. Details on this variant are provided in Section 3.

We will make two structural assumptions about the underlying Markov decision process. The first of
these guarantees the existence of stationary distributions for all policies.

Assumption 1 (Uniform ergodicity) Every policy π generates an ergodic Markov chain. Specifically, letting
Pπ be the transition operator of π defined as the matrix with elements Pπ(x ′|x) =∑

a π(a|x)P (x ′|x, a), and
d ,d ′ be any two distributions over X, the following inequality is satisfied for some C ,τ> 0 and for all k:∥∥∥(

d −d ′)P k
π

∥∥∥
1
≤Ce−k/τ∥∥d −d ′∥∥

1 .

We say that our MDP is uniformly ergodic if it satisfies Assumption 1. Notice that this assumption is
significantly weaker than the 1-step mixing assumption often made in the related literature (Even-Dar

2. This can be seen, e.g., by introducing the KKT multipliers for the constraints in the linear program.

3



BAS-SERRANO AND NEU

et al., 2009; Neu et al., 2014). It is easily shown to hold when all policies induce aperiodic and irreducible
Markov chains—see Theorem 4.9 in Levin et al. (2017) for a proof. Clearly, this assumption immediately
implies that every policy admits a unique stationary distribution as required in the discussion above. In
what follows below, we will often use the notation τmix = 2C (τ+1) and refer to this quantity as the mixing
time of the MDP3.

Given this assumption and the above definitions, we can establish a number of useful facts about the
optimal solutions (v∗,µ∗) to the saddle-point problem (1). We first note that an optimal policy π∗ can

be extracted from µ∗ in the states where µ∗(x, ·) > 0 as π∗(a|x) = µ∗(x,a)∑
a′ µ∗(x,a′) . Regarding v∗, the following

proposition summarizes some of its most important properties:

Proposition 1 Let (v∗,µ∗) be a solution of the problem (1). Then, v∗ satisfies the following properties:

• v∗ satisfies the Bellman optimality equations v∗(x) = r (x)−ρ∗+∑
x′ P (x ′|x, a)v∗(x ′) for all x; for any

c ∈R, v∗+ c is also a solution to (1);

• for any x, x ′, |v∗(x)− v∗(x ′)| ≤ τmix = 2C (τ+1).

All of these properties can be proven by standard arguments; we refer the reader to Lemma 1 in Wang
(2017) for a proof of the first item and Lemma 3 in Neu et al. (2014) for a proof of the second one.

3. The linearly relaxed saddle-point problem

While one can directly derive optimization algorithms to solve the saddle-point problem (1), such a direct
approach would suffer from serious scalability issues due to the sheer number of variables involved in the
problem: the size of the objects of interest µ and v are linear in the size of the state space, which results in
prohibitive memory and computation costs for most algorithms. To address this issue, we study a linearly
relaxed version of the full saddle-point problem that reduces the order of the original optimization problem
by linearly parametrizing the variables v and µ through two sets of feature maps. Formally, we consider
the matrices F of size |X|×N and W of size M ×|X×A|, introduce the new optimization variables y ∈RM

and u ∈ RN , and use these to (hopefully) approximate the solutions to (1) as µ∗ ≈ yW and v∗ ≈ Fu. For
a tractable problem formulation, we will assume that the rows of W are non-negative and sum to one:
Wm,x ≥ 0 for all x,m and

∑
x Wm,x = 1 for all m. We will also assume that all entries of F are bounded by 1

in absolute value. These conditions enable us to optimize y over the probability simplex ∆̃=∆[M ] and to
formulate our relaxed saddle-point problem as

min
u∈RN

max
y∈∆̃

L̃(u, y) = min
u∈RN

max
y∈∆̃

〈
W Ty,QFu

〉+〈
W Ty,r

〉
. (2)

The relaxed optimization problem above has been studied before by Lakshminarayanan and Bhatnagar
(2015); Lakshminarayanan et al. (2018), and Chen et al. (2018). Lakshminarayanan and Bhatnagar (2015);
Lakshminarayanan et al. (2018) studied the relaxed linear program underlying (2) as a natural extension of
the classic relaxed LP analyzed by de Farias and Van Roy (2003), and have focused on understanding the
discrepancies between the optimal value function and the relaxed value function attaining the minimum in
the above expression. On the other hand, Chen et al. (2018) focused on proposing stochastic optimization
algorithms and analyzing the rate of convergence to the optimum, but provide little insight about the
quality of the optimal solution of the relaxed problem.

One of our main goals in the present paper is to obtain a better understanding of the effects of approxi-
mation on the policies that can be obtained through approximately solving the the relaxed saddle-point
problem (2). One peculiar challenge associated with our setting is that it is not enough to ensure that
the values of L̃ and L are close at their respective saddle points, but we rather need to understand the

3. Note that this is just one of many possible definitions of a mixing time, see, e.g., Seneta (2006); Levin et al. (2017).
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performance of the policy extracted from the optimal solution y∗. Precisely, defining the policy extracted
from y as

πy (a|x) = (W Ty)(x, a)∑
a′ (W Ty)(x, a′)

for all x, a, and the corresponding stationary distribution as µy induced in the original MDP, we are
interested in the suboptimality gap

〈
µ∗−µy∗ ,r

〉
. In the present paper, we focus on identifying assumptions

on the feature maps that allow the computation of true optimal policies with (almost) zero suboptimality
gap. Specifically, we will show that the following two assumptions have a decisive role in making this gap
small:

Assumption 2 (Realizability) The optimal solution is realizable by the feature maps: there exists
(
u∗, y∗)

such that v∗ = Fu∗ and µ∗ =W Ty∗. Additionally, ‖u∗‖∞ ≤Uτmix holds for some U > 0.

Assumption 3 (Coherence) The image of the set ∆̃ under the map QTW T is included the column space of
F : for all y ∈ ∆̃ such that QTW Ty 6= 0, there exists a u ∈RN such that

〈
QTW Ty,Fu

〉 6= 0. Additionally, for all
v ∈R|X| with ‖v‖∞ ≤ 1, there exists a u ∈RN with ‖u‖∞ ≤U such that

〈
QTW Ty,Fu

〉= 〈
QTW Ty, v

〉
.

The second condition of each assumption is to ensure that the columns of F are well-conditioned and
are satisfied if the columns form an orthonormal basis. While realizability may already seem sufficient
for the relaxed problem to be a good enough approximation of the original one, we argue that the second
assumption is also necessary for the relaxation scheme to be reliable. Specifically, the following theorem
shows that in the absence of the coherence assumption, near-optimal solutions to the relaxed saddle-point
problem (2) can still lead to suboptimal policies in the original MDP.

Theorem 1 For any ε> 0, there exists an MDP with relaxations W,F satisfying Assumption 2 and violating
Assumption 3, and a solution (û, ŷε) simultaneously satisfying

L(F û,µ∗)−L(v∗,W T ŷε) = ε

and 〈
µ∗−µŷε ,r

〉= 2/3.

x1 x2 x3

+0 +0

+1 +3

.5
.5
.5.5

Figure 1: Three-state MDP for illus-
trating the necessity of the coherence
assumption. Transitions from x2 are
stochastic with probability 1/2 of stay-
ing in x2 and moving to x1 and x3 oth-
erwise, depending on the chosen ac-
tion. All other transitions are deter-
ministic. Rewards are given as a func-
tion of the state as r (x1) = 1, r (x2) = 0
and r (x3) = 3.

Proof The proof is based on constructing an MDP with three states
x1 (left), x2 (middle) and x3 (right) and two actions al and ar cor-
responding to moving “left” or “right”, respectively. The transition
probabilities and rewards are as shown on Figure 1. It is easy to see
that the optimal policy is to take action ar in state x2, which yields
the optimal stationary state-action distribution

µ∗ =(
µ(x1, ar ),µ(x2, al ),µ(x2, ar ),µ(x3, al )

)T =
(
0,0,

1

3
,

2

3

)T
and the optimal average reward ρ∗ = 1. The optimal value function
can be shown to be v∗ = (−1,−1,1)T. For the relaxation, define F =
v∗ and W as the identity map so that the realizability assumption
is clearly fulfilled with y∗ = µ∗ and u∗ = 1. Now, choosing ŷ =
(1,0,0,0)T results in

〈
W T ŷ ,QFu

〉= (
1 0 0 0

)
−1 1 0
1/2 −1/2 0

0 −1/2 1/2
0 1 −1


−1
−1
1

u = (
1 0 0 0

)
0
0
1
2

u = 0 ·u
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for any u. Observing that taking v = (−1,1,0)T gives
〈

W T ŷ ,Qv
〉= 2, we see that the coherence assumption is

violated since there exists no u such that the condition
〈

W T ŷ ,Qv
〉= 〈

W T ŷ ,QFu
〉

is satisfied. Furthermore,
it is easy to see that (ŷ ,u) for any u is an optimal solution to (2) with value ρ∗ = 1 since

L̃(u, ŷ) = ŷTW QFu + ŷTW r = (
1 0 0 0

)
1
0
0
3

= 1.

showing that (ŷ ,u) with any u is also an optimal solution to the relaxed saddle-point problem (2). The
resulting optimal state-action distribution µ̂= ŷW = ŷ is clearly not a stationary distribution.

To conclude the proof, fix any ε and consider ŷε = (1−ε,ε,0,0)T and any û. Noticing that
〈

W T ŷε,QFu
〉=

0 holds for all u, the duality gap associated with (û, ŷε) can be seen to be

L(F û,µ∗)−L(v∗,W T ŷε) = (
0 0 2/3 1/3

)
1
0
0
3

− (
1−ε ε 0 0

)
1
0
0
3

= 1− (1−ε) = ε.

The policy πŷε extracted from the state-action distribution ŷε takes action al in state x2, which results in an
average reward of 2/3. These two statements together prove the theorem.

4. Algorithm and main results

In this section, we provide our main positive results: deriving strong performance guarantees for policies
derived from approximate solutions of (2) under Assumptions 2 and 3. Our algorithm attaining these
guarantees is based on the Optimistic Mirror Descent framework proposed by Rakhlin and Sridharan
(2013a,b), and more specifically on its variant known as Mirror Prox due to Nemirovski (2004) (see also
Sections 4.5 and 5.2.3 in Bubeck (2015) for an easily accessible overview of this method).

For a generic description of Mirror Prox on a convex set Z, we let G : Z→ R be a monotone operator
satisfying

〈
G(z)−G(z ′), z − z ′〉≥ 0 for all z, z ′ ∈Z, and letΦ :Z→R be a σ-strongly convex regularization

function under some norm ‖·‖ with its corresponding Bergman divergence DΦ

(
z
∥∥z ′) = Φ(z)−Φ(z ′)−〈∇Φ(z ′), z − z ′〉. Mirror Prox computes a sequence of iterates with z1 ∈ argminΦ(z) and

ẑt+1 = argmin
Z

η〈G(zt ), z〉+DΦ(z, zt )

zt+1 = argmin
Z

η〈G(ẑt+1), z〉+DΦ(z, zt ).
(3)

The first of these steps is often referred to as an extrapolation step. A simpler version of this algorithm
not involving such an extrapolation step is commonly known as Mirror Descent (Nemirovski and Yudin,
1983; Beck and Teboulle, 2003; Bubeck, 2015). This step serves to enhance the stability of the algorithm,
and indeed Mirror Prox can be shown to enjoy favorable convergence properties in the problem setting
described above.

We instantiate the Mirror Prox method to address the relaxed saddle-point problem as follows. Our
optimization variables will be z = (u, y) and the monotone operator G will be chosen as

G(z) =
( ∇v L̃

−∇µL̃
)
=

(
FTQTW Ty

−W r −W QFu

)
. (4)

We will use the regularization function

Φ(z) = 1

2
‖u‖2

2 +
M∑

j=1
y j log y j ,
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that is, a linear combination of the squared 2-norm of the value-function parameters u and the Shannon
entropy of the distribution y . Clearly,Φ is 1-strongly convex on Z with respect to the norm ‖z‖2 = ‖u‖2

2 +∥∥y
∥∥2

1. Given the above specifications, the updates of our algorithm can be written as

ût+1 = ut −ηFTQTW Tyt , ŷt+1,i ∝ yt ,i eη((W r )i+(W QFut )i ) (5)

ut+1 = ut −ηFTQTW T ỹt+1, yt+1,i ∝ yt ,i eη((W r )i+(W QF ût+1)i ), (6)

where we used the notation “∝” to signify that ŷt+1 and yt+1 are normalized multiplicatively after each
update so that

∑
j yt+1, j = 1 is satisfied. Also introducing the notations yT = 1

T

∑T
t=1 yt and uT = 1

T

∑T
t=1 ût ,

the algorithm outputs the policy extracted from the distribution yT : πT = πyT
. Letting dT = dπT be the

stationary distribution associated with πT , the corresponding average reward can be written as ρT =∑
x,a dT (x)πT (a|x)r (x, a). The following theorem presents our main result regarding the suboptimality of

the resulting policy in terms of its average reward.

Theorem 2 Suppose that Assumptions 1, 2 and 3 hold and η≤ 1/4N . Then, the average reward ρT output
by the algorithm satisfies

ρ∗−ρT ≤ 11τ2
mixU 2N +7log M

ηT
.

In particular, setting η= 1/4N , the bound becomes ρ∗−ρT =O

(
τ2

mixN 2U 2

T

)
.

We note that this result can be tightened by a factor of N if we further assume that the rows of F are
chosen as probability distributions. In the special case where F and W are the identity maps, the relaxed
saddle-point problem becomes the original problem (1), and our Assumptions 2 and 3 are clearly satisfied
with U = 1. In this case, our algorithm satisfies the following bound:

Corollary 3 Suppose that Assumption 1 holds, W and F are the identity maps, and η ≤ 1/4. Then, the
average reward ρT of the policy output by our algorithm satisfies

ρ∗−ρT ≤ 11τ2
mix|X|+7log(|X||A|)

ηT
.

In particular, setting η= 1/4, the bound becomes ρ∗−ρT = Õ

(
τ2

mix|X|
T

)
.

A brief inspection of Equations (5)-(6) suggests that each update of our algorithm can be computed
in O (M N ) time, the most expensive operation being computing the matrix-vector products W QFu and
yTW QF . While this suggests that the algorithm may have runtime and memory complexity independent
of the size of the state space, we note that exact computation of the matrix W QF can still take O

(|X|2|A|)
time in the worst case. This can be improved to O (K ) when assuming that only K entries of the transition
matrix P are nonzero, which can be of order |X||A| in many interesting problems where the support of
P (·|x, a) is of size O (1) for all x, a. We stress however that the matrix W QF only needs to be computed once
as an initialization step of our algorithm. In contrast, a general algorithm like value iteration needs at least
Θ (K ) =Θ (|X||A|) for computing each update, showing a clear computational advantage of our method.
Further discussion of computational issues is deferred to Section 7.

5. Analysis

This section provides an outline of the analysis of our algorithm. At a high level, our analysis builds on
some well-known results regarding the performance of Mirror Prox, including a classical bound on the
duality gap of the obtained solutions. The crucial challenge posed by our setting is connecting the duality
gap on the saddle-point problem to a suboptimality gap of the extracted policies. The key innovation in our
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analysis is providing a new technique to connect these quentities through exploiting further properties of
Mirror Prox. In what follows, we first provide some general tools that will be helpful throughout the proofs,
and then provide the proof outline for Theorem 2. Full proofs are provided in Appendix A.

A central piece of our our analysis is the following useful lemma regarding the iterates computed by
Mirror Prox:

Lemma 4 LetΦ be σ-strongly convex and F be L-Lipschitz. Then, for all t , Mirror Prox guarantees

η〈ẑt+1 − z,G(ẑt+1)〉 ≤ DΦ(z‖zt )−DΦ(z‖zt+1)− σ−ηL

4
‖zt+1 − zt‖2 .

holds for every z ∈Z and t > 0.

The proof is based on standard arguments, see, for instance, Lemma 1 of Rakhlin and Sridharan (2013b).
We include it in Appendix A.1 for completeness. This lemma has two important corollaries that we will
crucially use throughout the analysis. The first one shows that the iterates remain bounded during the
optimization procedure.

Corollary 5 Let z∗ = (
u∗, y∗)

be any solution to maxy minu L̃
(
u, y

)
and suppose that the conditions of

Lemma 4 hold. Then, for all t , Mirror Prox guarantees

DΦ

(
z∗∥∥zt

)≤ DΦ

(
z∗∥∥z0

)
.

The proof follows from noticing that z∗, being an optimal solution to the saddle-point problem, satisfies
the variational inequality 〈ẑt+1 − z∗,G(ẑt+1)〉 ≥ 0. The second corollary establishes a bound on the duality
gap evaluated at (uT , yT ):

Corollary 6 Let z = (
u, y

) ∈ Z be arbitrary and assume that η ≤ σ
2L . Then, Mirror Prox guarantees the

following bound on the duality gap:

L
(
uT , y

)−L
(
u, yT

)≤DΦ(z, z0)

ηT
.

The proof easily follows by noticing that 〈ẑt+1 − z,G(ẑt+1)〉 equals the duality gap evaluated at (ût+1, ŷt+1),
and summing the bound given in Lemma 4.

In order to apply the above tools to our problem, we first need to confirm that our objective is indeed

smooth with respect to the norm ‖z‖2 = ‖u‖2
2 +

∥∥y
∥∥2

1. The following lemma establishes this property.

Lemma 7 Let K = maxx
∥∥Fx,·

∥∥
1. Then, the function L̃ is 2K -smooth with respect to ‖·‖.

The proof is provided in Appendix A.3. Notably, this lemma implies that the L̃ is 2-smooth when the rows
of F form probability distributions. In the worst case, however, when we only assume that the entries of F
are bounded in absolute value by 1, the smoothness constant can be as large as 2N . In what follows, we
will assume that η≤ 1/(4K ).

We proceed by appealing to the realizability assumption to choose x = (u∗, y∗) such that z = (v∗,µ∗) =
(Fu∗,W Ty∗), and observe that

L̃
(
uT , y∗)− L̃

(
u∗, yT

)= 〈
µ∗,QF uT + r

〉−〈
W TyT ,Qv∗+ r

〉≤ DΦ(z∗, z0)

ηT

holds by virtue of Corollary 6 and the choice of η. Observing that QTµ∗ = 0 holds due to the stationarity of
µ∗ and reordering gives 〈

µ∗−W TyT ,r
〉≤ DΦ(z∗, z0)

ηT
+〈

QTW TµT , v∗〉
. (7)

The remaining key question is how to relate
〈

W TyT ,r
〉

to the true average reward ρT associated with the
extracted policy. This is done with the help of the following lemma, one of our key results:
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Lemma 8 Suppose that Assumption 1 holds. Let µ be an arbitrary distribution over X×A and let πµ be the
policy extracted from µ. Then, the average reward ρµ of πµ satisfies

〈
µ,r

〉−ρµ ≤ τmix

∥∥QTµ
∥∥

1.

The proof is provided in Appendix A.2. Combining this result with the bound of Equation 7 and using that
‖v∗‖∞ ≤ τmix, we obtain

ρ∗−ρT ≤ DΦ(z∗, z0)

ηT
+2τmix

∥∥QTW TyT

∥∥
1 . (8)

Thus, it only remains to bound
∥∥QTW TyT

∥∥
1. In order to do this, we crucially use Assumption 3 that

guarantees the coherence of the feature maps to prove the following result:

Lemma 9 Suppose that Assumptions 2 and 3 hold. Then,

τmix

∥∥QTW T ȳT
∥∥

1 ≤
5τ2

mixU 2N +3log M

ηT

The proof of this lemma is provided in Appendix A.4. Combining the bound of this lemma with Equation (8)
and using DΦ(z∗‖z0) ≤ τ2

mixN + log(M) concludes our proof of Theorem 3.

6. Numerical illustration

In this section, we provide preliminary empirical results on a simple Markov decision process in order to
illustrate our theoretical results, and specifically compare the performance of our algorithm with that of
Mirror Descent and the classic value iteration algorithm. We consider a rectangular s × s gridworld with
one nonzero reward placed in state xr , so that r (x, a) = Ix=xr . Once the agent arrives to xr , it is randomly
teleported to any of the other states with equal probability. In any other state, the agent can decide to
move to a neighboring cell in any direction. The attempt to move in the desired direction is successful with
probability p, otherwise the agent moves in the opposite direction with probability 1−p. If the agent is in
an edge of the grid and it makes an step in the direction of the edge, it appears in the opposite edge.
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(a) p = 0.9, and η= 1
4 .
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(b) p = 0.9, and η= 3.

Figure 2: Regret as a function of the number of iterations of MP, MD, and value iteration in a grid world
example.

Figure 2 shows some results on a grid of side s = 10. We observe that the convergence of Mirror Prox is
much faster than that of Mirror Descent, and that the last iterate of MP converges very quickly to the opti-
mum, achieving it after finitely many iterations. We also note that for higher values of η than the ones found
to be safe in our bounds (at most 1/4), the algorithm is still stable and can lead to faster convergence to the
optimum. Explaining the fast convergence of the last iterate of Mirror Prox from a theoretical perspective
remains an interesting open problem. Similarly, we are not aware of any performance guarantees for value
iteration in the setting that we consider (average reward MDPs under the relatively weak Assumption 1),
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nevertheless we observe that this classic algorithm performs spectacularly well on the simple example
we consider. On the other hand, we stress that the advantage of our methodology is being able to directly
address large-scale problems through the linearly relaxed saddle-point formulation—a structure that value
iteration cannot exploit.

7. Discussion

Our most important contributions concern the relaxed saddle-point problem (2), most notably including
our discussion on the necessity and sufficience of the coherence assumption (Assumption 3). As we’ve
mentioned earlier, several relaxation schemes similar to ours have been studied in the literature. In fact,
relaxing the linear program underlying (1) through the introduction of the feature map F for approximating
the value function v∗ is one of the oldest ideas in approximate dynamic programming, originally introduced
by Schweitzer and Seidman (1985). The effects of this approximation were studied by de Farias and Van
Roy (2003) in the context of discounted Markov decision processes. A relaxation scheme involving both the
feature maps F and W was considered by Lakshminarayanan and Bhatnagar (2015); Lakshminarayanan
et al. (2018). Both sets of authors carefully observed that introducing relaxations may make the linear
program unbounded, and proposed algorithmic steps and structural assumptions of F and W to fight
this issue. The results of these works are incomparable to ours since they focus on controlling the errors
in approximating the optimal value function v∗ rather than controlling the suboptimality of the policies
output by the algorithm. Interestingly, the widely popular REPS algorithm of Peters et al. (2010) is also
originally derived from the relaxed linear program analyzed by de Farias and Van Roy (2003), even if this
connection has not been pointed out by the authors.

The work of Chen et al. (2018) is very close to ours in spirit. Chen et al. consider a variation of the relaxed
saddle-point problem (2) with W being block-diagonal with FT in each of its blocks, and claim convergence
results for their algorithm to the optimal policy under only a realizability assumption. Unfortunately, their
choice of W does not necessarily ensure that the coherence assumption holds, which raises concerns
regarding the generality of their guarantees. Indeed, the results of Chen et al. require an additional
assumption that implies that maxx dπ(x)

minx′ dπ(x′) remains bounded by a constant for any policy π, which is extremely

difficult to ensure in problems of practical interest. In fact, this ratio is already exponentially large in |X| in
very simple problems like the one we consider in our experiments. Additionally, the analysis of Chen et al.
is based on the potentially erroneous claim that under the realizability assumption, the representation
(u∗, y∗) of the original optimal solution (v∗,µ∗) = (Fu∗,W Ty∗) always remains an optimal solution to the
relaxed saddle-point problem. It is currently unclear if this claim is indeed true, or to what extent their
condition regarding the boundedness of stationary distribution can be relaxed.

In any case, we believe that our coherence assumption is more fundamental than the previously
considered conditions, and it enables a much more transparent analysis of optimization algorithms
addressing the relaxed saddle-point problem (2). Beyond this particular positive result, our work also
cleans the slate for further theoretical work on approximate optimization in Markov decision processes.
Indeed, the form of our coherence assumption naturally invites the question: can we compute good
approximate solutions to the original problem when our assumptions are only satisified approximately?
Similar questions are not without precedent in the reinforcement-learning literature. Translated to our
notation, classical results concerning the performance of (least-squares) temporal difference learning
algorithms imply that the approximation errors are controlled by the projection error of QFu∗+ r to the
column space of F (Tsitsiklis and Van Roy, 1997; Bradtke and Barto, 1996; Lazaric et al., 2010). When
using more general function classes to approximate v∗, Munos and Szepesvári (2008) show that the
approximation errors are controlled by the inherent Bellman error of the function class, which captures
an approximation property related to our coherence condition. Whether or not we can generalize our
techniques to construct provably efficient algorithms under such milder assumptions remains an exciting
open problem that we leave open for future research.
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Appendix A. Ommitted proofs

A.1. The proof of Lemma 4

The proof will rely on repeatedly using the so-called three-points identity that can easily be shown to hold
for all points x, y, z ∈Z:

DΦ

(
x
∥∥y

)= DΦ(x‖z)+DΦ

(
z
∥∥y

)+〈∇Φ(y)−∇Φ(z), z −x
〉

.

We first use it to show

DΦ(z‖zt+1) = DΦ(z‖zt )−DΦ(zt+1‖zt )+η〈z − zt+1,∇Φ(zt+1)−∇Φ(zt )〉
≤ DΦ(z‖zt )−DΦ(zt+1‖zt )+η〈z − zt+1,G(ẑt+1)〉 ,

where we also used the first-order optimality condition for zt+1 in the second step:〈∇Φ(zt )−∇Φ(zt+1)−ηG(ẑt+1), zt+1 − z
〉≥ 0.

Furthermore, we have

〈z − zt+1,G(ẑt+1)〉 = 〈z − ẑt+1,G(ẑt+1)〉+〈ẑt − zt+1,G(ẑt+1)〉 .

Using this bound together with the three-points identity

DΦ(zt+1‖zt ) = DΦ(zt+1‖ẑt+1)+DΦ(ẑt+1‖zt )+〈∇Φ(zt )−∇Φ(ẑt+1), ẑt+1 − zt+1〉 ,

we obtain

DΦ(z‖zt+1) ≤ DΦ(z‖zt )−DΦ(zt+1‖zt )+η〈ẑt+1 − zt+1,G(ẑt+1)〉+η〈z − ẑt+1,G(ẑt+1)〉
= DΦ(z‖zt )−DΦ(zt+1‖ẑt+1)−DΦ(ẑt+1‖zt )+η〈z − ẑt+1,G(ẑt+1)〉

+〈∇Φ(zt )−∇Φ(ẑt+1)−ηG(ẑt+1), zt+1 − ẑt+1
〉

= DΦ(z‖zt )−DΦ(zt+1‖ẑt+1)−DΦ(ẑt+1‖zt )

+〈∇Φ(zt )−∇Φ(ẑt+1)−ηG(zt ), zt+1 − ẑt+1
〉+η〈G(zt )−G(ẑt+1), zt+1 − ẑt+1〉

+η〈z − ẑt+1,G(ẑt+1)〉
≤ DΦ(z‖zt )−DΦ(zt+1‖ẑt+1)−DΦ(ẑt+1‖zt )+η〈G(zt )−G(ẑt+1), zt+1 − ẑt+1〉

+η〈z − ẑt+1,G(ẑt+1)〉 ,

where the last step follows from the fact that ẑt+1 satisfies the first-order optimality condition〈∇Φ(zt )−∇Φ(ẑt+1)−ηG(zt ), zt+1 − ẑt
〉≤ 0.

Now, using the σ-strong convexity ofΦ and the L-Lipschitz continuity of F , we obtain

DΦ(z‖zt+1) ≤ DΦ(z‖zt )−DΦ(zt+1‖ẑt+1)−DΦ(ẑt+1‖zt )+η〈G(zt )−G(ẑt+1), zt+1 − ẑt+1〉
+η〈z − ẑt+1,G(ẑt+1)〉

≤ DΦ(z‖zt )− σ

2
‖zt+1 − ẑt+1‖2

2 −
σ

2
‖ẑt+1 − zt‖2

2 +ηL ‖zt − ẑt+1‖2 ‖zt+1 − ẑt+1‖2

+η〈z − ẑt+1,G(ẑt+1)〉

≤ DΦ(z‖zt )− σ−ηL

2

(‖zt+1 − ẑt+1‖2
2 +‖ẑt+1 − zt‖2

2

)
+η〈z − ẑt+1,G(ẑt+1)〉

≤ DΦ(z‖zt )− σ−ηL

4
‖zt+1 − zt‖2

2 +η〈z − ẑt+1,G(ẑt+1)〉 ,

where we also used the elementary inequalities 2ab ≤ a2 +b2 and (a +b)2 ≤ 2a2 +2b2 in the last two steps,
respectively. ■
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A.2. The proof of Lemma 8

To enhance readability of the proof, we will omit explicit references to T below, and will simply use π, ρ
and µ to refer to πT , ρT and µT , respectively. Defining d(x) =∑

a µ(x, a) for all x, we start by noticing that〈
µ,r

〉−ρ =∑
x,a

(
d(x)−d(x)

)
π(a|x)r (x, a) ≤

∥∥∥d −d
∥∥∥

1
,

so all we are left with is bounding the total variation distance between d and d . To do this, we start by fixing
an arbitrary k > 0 and observing that∥∥∥(

d −d
)

P k
π

∥∥∥
1
≤Ce−k/τ

∥∥∥d −d
∥∥∥

1

≤Ce−k/τ
(∥∥∥d −dP k

π

∥∥∥
1
+

∥∥∥dP k
π −d

∥∥∥
1

)
,

(9)

where we used Assumption 1 in the first step and the triangle inequality in the second one. Regarding the
first term in the parentheses, we repeatedly use the triangle inequality to obtain∥∥∥d −dP k

π

∥∥∥
1
≤

∥∥∥d −dPπ
∥∥∥

1
+

∥∥∥dPπ−dP 2
π

∥∥∥
1
+·· ·+

∥∥∥dP k−1
π −dP k

π

∥∥∥
1

=
∥∥∥d −dPπ

∥∥∥
1
+

∥∥∥(
d −dPπ

)
Pπ

∥∥∥
1
+·· ·+

∥∥∥(
d −dPπ

)
P k−1
π

∥∥∥
1

≤
∥∥∥d −dPπ

∥∥∥
1
+Ce−1/τ

∥∥∥d −dPπ
∥∥∥

1
+·· ·+Ce−(k−1)/τ

∥∥∥d −dPπ
∥∥∥

1

≤C
∥∥∥d −dPπ

∥∥∥
1

k−1∑
i=0

e−i /τ ≤ C

1−e−1/τ

∥∥∥d −dPπ
∥∥∥

1
.

Plugging this bound into Equation 9 and observing that dP k
π −d =

(
d −d

)
P k
π due to stationarity of d , we

get ∥∥∥(
d −d

)
P k
π

∥∥∥
1
≤Ce−k/τ

(
C

1−e−1/τ

∥∥∥d −dP k
π

∥∥∥
1
+

∥∥∥(
d −d

)
P k
π

∥∥∥
1

)
.

Reordering gives ∥∥∥(
d −d

)
P k
π

∥∥∥
1
≤ Ce−k/τ

1−Ce−k/τ
· C

1−e−1/τ

∥∥∥d −dPπ
∥∥∥

1
.

Thus, using the triangle inequality again yields∥∥∥d −d
∥∥∥

1
≤

∥∥∥d −dP k
π

∥∥∥
1
+

∥∥∥dP k
π −d

∥∥∥
1

≤
(

1+ Ce−k/τ

1−Ce−k/τ

)
C

1−e−1/τ

∥∥∥d −dPπ
∥∥∥

1
.

Now, choosing any k ≥ τ log(2C ) and using the elementary inequality 1/(1−e−1/τ) ≤ τ+1 concludes the
proof. ■

A.3. The proof of Lemma 7

We start by noticing that the dual norm of ‖z‖2 = ‖u‖2
2+

∥∥y
∥∥2

1 evaluated at x = (w, q) is ‖x‖2∗ = ‖w‖2
2+

∥∥q
∥∥2
∞.

Recalling that the smoothness of L̃ with respect to ‖·‖ is equivalent to the Lipschitzness of G with respect to
‖·‖∗, we will prove that

∥∥G(z)−G(z ′)
∥∥2
∗ ≤ 2

∥∥z − z ′∥∥2. Using the definition of G(z), we have for any z = (u, y)
and z ′ = (u′, y ′) that ∥∥G(z)−G(z ′)

∥∥2
∗ = ∥∥QTW T

(
y − y ′)∥∥2

2 +
∥∥QF (u −u′)

∥∥2
∞

14



FASTER SADDLE-POINT OPTIMIZATION FOR SOLVING MDPS

The first term can be bounded as∥∥QTW T
(
y − y ′)∥∥

2 ≤
∥∥QTW T

(
y − y ′)∥∥

1 ≤
∥∥W T

(
y − y ′)∥∥

1 +
∥∥PTW T

(
y − y ′)∥∥

1 ≤ 2
∥∥y − y ′∥∥

1 ,

where we used the fact that the rows of W form probability distributions. To bound the last term, we
observe that

∥∥QF (u −u′)
∥∥2
∞ = max

x,a

∣∣∣∣∣∑
x′

(
I{x=x′} −P (x ′|x, a)

)∑
i

Fx′,i
(
ui −u′

i

)∣∣∣∣∣
2

≤ max
x,a

(∥∥I{x=·} −P (·|x, a)
∥∥

1 ·
∥∥F

(
u −u′)∥∥∞)2

≤ 2max
x

∣∣∣∣∣∑
i

Fx,i (ui −u′
i )

∣∣∣∣∣
2

≤ 2max
x

∥∥Fx,·
∥∥2

1

∥∥u −u′∥∥2
∞

≤ 2K
∥∥u −u′∥∥2

∞ ≤ 2K
∥∥u −u′∥∥2

2 .

This concludes the proof. ■

A.4. The proof of Lemma 9

The statement is obvious when QTW TyT = 0, so we will assume that the contrary holds below. Let us define

w = τmix · arg max
v :‖v‖∞=1

〈
QTW TyT , v

〉
,

noting that
〈
QTW TyT , w

〉 = τmix

∥∥QTW TyT

∥∥
1 > 0. By using this fact and Assumption 3, we crucially

observe that there exists a ũ such that
〈
QTW TyT , w

〉 = 〈
QTW TyT ,F ũ

〉
and ‖ũ‖∞ ≤ τmixU . This implies

that we can apply Corollary 6 with z = (F uT −F ũ,W TyT ) to obtain the bound

〈
QTW TyT , w

〉= 〈
QTW TyT ,F uT

〉+〈
W TyT ,r

〉−〈
QTW TyT ,F

(
uT − ũ

)〉−〈
W TyT ,r

〉≤ DΦ(z‖z0)

ηT
.

Plugging in the definition of w and the Bregman divergence DΦ, we obtain

∥∥QTW TyT

∥∥
1 ≤

1
2

∥∥ũ −uT
∥∥2

2 + log M

ητmixT
.

Due to Assumption 2 and our assumption on F stated before Theorem 3, we can choose an optimal solution
u∗ satisfying Fu∗ = v∗ and ‖u∗‖∞ ≤ τmixU and write∥∥ũ −uT

∥∥2
2 ≤ 2

∥∥ũ −u∗∥∥2
2 +2

∥∥uT −u∗∥∥2
2 ≤ 4‖ũ‖2

2 +4
∥∥u∗∥∥2

2 +4DΦ

(
z∗∥∥zT

)
≤ 4N ‖ũ‖2

∞+4N
∥∥u∗∥∥2

∞+4DΦ

(
z∗∥∥z0

)
≤ 10τ2

mixU 2N +4log M ,

where in the second line we have used Corollary 5 that implies DΦ

(
z∗∥∥zT

)≤ DΦ(z∗‖z0). ■
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