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Mainstream RL 
and REPS



Learner:

•Observe state 𝑥𝑡, take action 𝑎𝑡
•Obtain reward 𝑟 𝑥𝑡 , 𝑎𝑡
Environment:

•Generate next state 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥, 𝑎
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THE GOSPEL OF MODERN RL

“Solving MDPs ≡ Solving the Bellman eqns”

Bad news:
solving systems of equations is not easy with modern ML tools!

Good news:
Optimal Q-function encodes optimal policy:

𝜋∗ 𝑎 𝑥 = 𝕀 𝑎=argmax𝑏 𝑄
∗ 𝑥,𝑏
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Define the Bellman error
𝛿𝑄 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾𝔼 max𝑎′ 𝑄 𝑥′, 𝑎′ 𝑥, 𝑎 − 𝑄 𝑥, 𝑎

and measure the “goodness” of a 𝑄-function with the loss

ℒ 𝑄 = 𝔼 𝑥,𝑎 ∼𝜇 𝛿𝑄 𝑥, 𝑎
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THE SQUARED BELLMAN ERROR

TIME TO DO GRADIENT DESCENT!!!1!!

Not so fast!
This loss is:

• non-convex, non-smooth & non-Lipschitz
• hard to estimate due to double sampling
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Some version of SBE is used in:
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•Policy gradient / Actor-Critic methods
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•…

THE SBE IS EVERYWHERE!

One exception: REPS!



SOMETHING DIFFERENT

• Based on a linear-programming formulation instead of 
the Bellman equations (Manne, 1960)

• A “mirror descent” algorithm (Nemirovski & Yudin, 1983)

• Key practical novelty: a natural loss function!



RELATIVE ENTROPY POLICY SEARCH

REPS
Parameters: learning rate 𝜂, feature map 𝜓:𝒳 → ℝ𝑚

Initialization: policy 𝜋1
For 𝑘 = 1,2,… , 𝐾
• Let 𝜇𝑘 be the state-action distribution of 𝜋𝑘
• Define loss function:

𝒢𝑘 𝜗 =
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇𝑘 𝑒

𝜂𝛿𝜗 𝑥,𝑎 + 1 − 𝛾 𝜈0, 𝑉𝜗

• Policy evaluation:
𝜗𝑘 = argmin

𝜗
𝒢𝑘 𝜗

• Policy update:

𝜋𝑘+1 𝑎 𝑥 ∝ 𝜋𝑘 𝑎 𝑥 exp 𝜂𝛿𝜗𝑘 𝑥, 𝑎

Definitions
Value-function approximation:

𝑉𝜗 𝑥 = 𝜗,𝜓 𝑥
Bellman error:
𝛿𝜗 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾𝑃𝑥,𝑎𝑉𝜗 − 𝑉𝜗 𝑥
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Bad news:
no natural loss 

function for policy eval

DQN
Good news:

natural convex loss for 
policy evaluation

Q-REPS

Good news:
policy directly 

encoded by Q-function

+ convergence guarantees to optimal policy
+ guarantees on “double sampling” bias
+ practical methods for empirical policy evaluation
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REPS WITH Q-FUNCTIONS
Q-REPS
Parameters: learning rates 𝜂, 𝛼, 
feature map 𝜑:𝒳 ×𝒜 → ℝ𝑚

Initialization: policy 𝜋1
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• Define loss function:

𝒢𝑘 𝜃 =
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇𝑘 𝑒

𝜂Δ𝜃 𝑥,𝑎 + 1 − 𝛾 𝜈0, 𝑉𝜃

• Policy evaluation:
𝜃𝑘 = argmin

𝜃
𝒢𝑘 𝜃

• Policy update:

𝜋𝑘+1 𝑎 𝑥 ∝ 𝜋𝑘 𝑎 𝑥 exp 𝜂𝑄𝜃𝑘 𝑥, 𝑎

Definitions
Q-function approximation:

𝑄𝜃 𝑥, 𝑎 = 𝜃, 𝜑 𝑥, 𝑎
Softmax value function

𝑉𝜃 𝑥 =
1

𝛼
log𝔼𝑎∼𝜋𝑘 ⋅ 𝑥 𝑒𝛼𝑄𝜃 𝑥,𝑎
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•Convex and smooth (composition of two monotone 
convex functions that are smooth)

•2-Lipschitz w.r.t. ℓ∞-norm:

∇𝑄𝒢𝑘 𝑄
1
≤ 2

•Easy to estimate reliably using sample transitions

THE NEW LOSS FUNCTION

The Logistic Bellman Error (LBE)

𝒢𝑘 𝜃 =
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇𝑘 𝑒
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•Define TD-error
Δ𝜃 𝑥, 𝑎, 𝑥′ = 𝑟 𝑥, 𝑎 + 𝛾𝑉𝜃 𝑥′ − 𝑄𝜃(𝑥, 𝑎)

•Let 𝑋𝑛, 𝐴𝑛, 𝑋𝑛
′

𝑛=1
𝑁 be sample transitions from 𝜇𝑘

ESTIMATING THE LBE

The empirical LBE (ELBE)
መ𝒢𝑘 𝜃 =

1

𝜂
log

1

𝑁
σ𝑛=1
𝑁 𝑒𝜂Δ𝜃 𝑋𝑛,𝐴𝑛,𝑋𝑛

′
+ 1 − 𝛾 𝜈0, 𝑉𝜃
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Warning!
Subject to “double sampling bias”:

𝔼 𝑒𝜂Δ 𝑋,𝐴,𝑋′ ≠ 𝔼 𝑒𝜂Δ 𝑋,𝐴 = 𝔼 𝑒𝜂𝔼[Δ 𝑋,𝐴,𝑋′ |𝑋,𝐴]
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DOUBLE SAMPLING BIAS

Theorem
with probability ≥ 1 − 𝛿,

𝒢𝑘 𝜃 − መ𝒢𝑘 𝜃 = 𝑂 𝜂 +
log(1/𝛿)

𝑁

Bias is 
controlled by 𝜂!



•Practical implementations will always have optimization errors:
𝜀𝑘 = 𝒢𝑘 𝜃𝑘 −min

𝜃
𝒢𝑘 𝜃 ≥ 0

•Question: how do these errors accumulate?
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•Practical implementations will always have optimization errors:
𝜀𝑘 = 𝒢𝑘 𝜃𝑘 −min

𝜃
𝒢𝑘 𝜃 ≥ 0

•Question: how do these errors accumulate?

•Answer:

very reasonably!

OPTIMIZATION ERRORS



ERROR PROPAGATION BOUND

Theorem
1

𝐾
σ𝑘=1
𝐾 𝑅∗ − 𝑅𝑘 ≤

𝐷(𝜇∗|𝜇0)

𝜂𝐾
+

𝐻(𝑑∗|𝑑0)

𝛼𝐾

+
1

𝐾
σ𝑘=1
𝐾 𝜀𝑘

+
𝐶𝛾

𝐾

𝛼

1−𝛾
+ 𝜂 σ𝑘=1

𝐾 𝜀𝑘
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Conditions: the features need to have sufficient representation power (“factored linear 
MDPs”). This clearly holds for tabular MDPs and the bounds remain meaningful for very 
large state spaces.

When 𝜀𝑘 = 0, this gives 
a rate of 𝑂(1/𝐾)



WHY IS THIS A BIG DEAL?

Theorem
𝒢𝑘 𝜃 − መ𝒢𝑘 𝜃 = 𝑂 𝜂

Theorem

err𝐾 ≤ 𝑂
1

𝐾
σ𝑘=1
𝐾 𝜀𝑘 + 𝜂𝜀𝑘

No such result possible 
for squared Bellman error!
(only after severe patching)

Similar results are known 
for SBE, but there’s no 
algorithms that can reliably 
control these errors!
(due to above reason)



•Minimizing the LBE can be equivalently written as

min
𝜃

1

𝜂
log

1

𝑁
෍

𝑛=1

𝑁

𝑒𝜂Δ𝜃 𝑋𝑛,𝐴𝑛,𝑋𝑛
′

+ 1 − 𝛾 𝜈0, 𝑉𝜃

= min
𝜃

max
𝑧∈𝐷𝑁

෍

𝑛=1

𝑁

𝑧𝑛 Δ𝜃 𝑋𝑛, 𝐴𝑛, 𝑋𝑛
′ −

1

𝜂
log 𝑁𝑧𝑛 + 1 − 𝛾 𝜈0, 𝑉𝜃
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MINIMIZING THE ELBE
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•Minimizing the LBE can be equivalently written as

min
𝜃

1

𝜂
log

1

𝑁
෍

𝑛=1

𝑁

𝑒𝜂Δ𝜃 𝑋𝑛,𝐴𝑛,𝑋𝑛
′

+ 1 − 𝛾 𝜈0, 𝑉𝜃

= min
𝜃

max
𝑧∈𝐷𝑁

෍

𝑛=1

𝑁

𝑧𝑛 Δ𝜃 𝑋𝑛, 𝐴𝑛, 𝑋𝑛
′ −

1

𝜂
log 𝑁𝑧𝑛 + 1 − 𝛾 𝜈0, 𝑉𝜃

MINIMIZING THE ELBE

Gradient w.r.t. 𝜃 is 
an expectation ⇒
well-suited for SGD!

Implementation: two-player game between
• a learner updating 𝜃 via SGD
• a sampler updating 𝑧 via exponentiated GD



AND IT WORKS!!!
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•Like REPS, Q-REPS is a mirror descent algorithm:
𝑧𝑘+1 = argmax

𝑧∈𝒮
𝑧, 𝑟 − 𝑅 𝑧 𝑧𝑘 ,

with several major differences in how 𝑧, 𝒮, 𝑅 are defined

•Algorithm derived from LP formulation of optimal control in 
MDPs with 3 tricks: 

linear relaxation + regularization + Lagrangian decomposition

•Analysis based on:
• Convex analysis & Lagrangian duality

• Ideas from the classic mirror-descent analysis

• A bit of stability analysis for MDPs

• Exploiting a bunch of properties of the Shannon entropy

WHAT’S BEHIND Q-REPS?
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•Maximizing discounted return can be written as the LP
maximize 𝜇, 𝑟

subject to ෍

𝑎

𝜇(𝑥, 𝑎) = 𝛾 ෍

𝑥′,𝑎′

𝑃 𝑥 𝑥′, 𝑎′ 𝜇 𝑥′, 𝑎′ + 1 − 𝛾 𝜈0 𝑥

𝜇 𝑥, 𝑎 ≥ 0

Dual LP:
minimize 1 − 𝛾 𝔼𝑥∼𝜈0 𝑉 𝑥

subject to 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾෍

𝑥′

𝑃 𝑥′ 𝑥, 𝑎 𝑉 𝑥′

LINEAR PROGRAMMING FOR MDPS
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𝜇 ∈ Δ𝒳×𝒜
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subject to 𝐸𝑉 ≥ 𝑟 + 𝛾𝑃𝑉

VECTOR NOTATION TO MAKE LIFE EASY
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•Primal LP:
maximize 𝜇, 𝑟
subject to Ψ⊤𝐸⊤𝜇 = Ψ⊤ 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

𝜇 ∈ Δ𝒳×𝒜

•Dual LP:
minimize 1 − 𝛾 𝜈0, Ψ𝜗
subject to 𝐸Ψ𝜗 ≥ 𝑟 + 𝛾𝑃Ψ𝜗

DERIVATION OF REPS
REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Ψ: feature matrix 
with rows 𝜓 𝑥 ∈ ℝ𝑚



•Primal convex program:
maximize 𝜇, 𝑟 − 𝐷 𝜇 𝜇ref /𝜂
subject to Ψ⊤𝐸⊤𝜇 = Ψ⊤ 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

𝜇 ∈ Δ𝒳×𝒜

•Dual convex program:

minimize 1 − 𝛾 𝜈0, Ψ𝜗 +
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇ref

𝑒𝜂𝛿𝜗 𝑥,𝑎

DERIVATION OF REPS
REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Ψ: feature matrix 
with rows 𝜓 𝑥 ∈ ℝ𝑚

𝐷: relative entropy

𝐷 𝜇 𝜇′ = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

𝛿𝜗: Bellman error 
𝛿𝜗 = 𝑟 + 𝛾𝑃𝑉𝜗 − 𝐸𝑉𝜗
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subject to Ψ⊤𝐸⊤𝜇 = Ψ⊤ 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

𝜇 ∈ Δ𝒳×𝒜

•Dual convex program:

minimize 1 − 𝛾 𝜈0, Ψ𝜗 +
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇ref

𝑒𝜂𝛿𝜗 𝑥,𝑎

DERIVATION OF REPS
REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Ψ: feature matrix 
with rows 𝜓 𝑥 ∈ ℝ𝑚

How do we introduce 
Q-functions?

𝐷: relative entropy

𝐷 𝜇 𝜇′ = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

𝛿𝜗: Bellman error 
𝛿𝜗 = 𝑟 + 𝛾𝑃𝑉𝜗 − 𝐸𝑉𝜗



•Lagrangian decomposition: introduce “mirror image” 𝑑 of 𝜇
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subject to 𝐸⊤𝜇 = 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

𝜇 ∈ Δ𝒳×𝒜
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•Lagrangian decomposition: introduce “mirror image” 𝑑 of 𝜇

•Primal LP:
maximize 𝜇, 𝑟
subject to 𝐸⊤𝑑 = 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

𝑑 = 𝜇
𝜇 ∈ Δ𝒳×𝒜

•Dual LP:
minimize 1 − 𝛾 𝜈0, 𝑉
subject to 𝐸𝑉 ≥ 𝑄

𝑄 = 𝑟 + 𝛾𝑃𝑉

Q-FUNCTIONS IN THE LP FRAMEWORK

Mehta and Meyn (2009, 2020), Lee and He (2019), Neu and Pike-Burke (2020)
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•Primal LP:
maximize 𝜇, 𝑟
subject to 𝐸⊤𝑑 = 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

Φ⊤𝑑 = Φ⊤𝜇
Dual LP:

minimize 1 − 𝛾 𝜈0, 𝑉
subject to 𝐸𝑉 ≥ Φ𝜃

Φ𝜃 ≥ 𝑟 + 𝛾𝑃𝑉

DERIVATION OF Q-REPS
Q-REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Φ: feature matrix with 
rows 𝜑 𝑥, 𝑎 ∈ ℝ𝑚



•Primal LP:
maximize 𝜇, 𝑟 − 𝐷 𝜇 𝜇ref /𝜂 − 𝐻 𝑑 𝑑ref /𝛼
subject to 𝐸⊤𝑑 = 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

Φ⊤𝑑 = Φ⊤𝜇
Dual LP:

minimize 1 − 𝛾 𝜈0, 𝑉𝜃 +
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇ref

𝑒𝜂Δ𝜃 𝑥,𝑎

with 𝑉𝜃 𝑥 =
1

𝛼
log σ𝑎 𝜋ref 𝑎 𝑥 𝑒𝛼𝑄𝜃 𝑥,𝑎

DERIVATION OF Q-REPS
Q-REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Φ: feature matrix with 
rows 𝜑 𝑥, 𝑎 ∈ ℝ𝑚

Δ𝜃: Bellman error 
Δ𝜃 = 𝑟 + 𝛾𝑃𝑉𝜃 − 𝑄𝜗

𝐻: conditional entropy

𝐻 𝑑 𝑑′ = σ𝑥,𝑎 𝑑 𝑥, 𝑎 log
𝜋𝑑(𝑥,𝑎)

𝜋𝑑′(𝑥,𝑎)



•Primal LP:
maximize 𝜇, 𝑟 − 𝐷 𝜇 𝜇ref /𝜂 − 𝐻 𝑑 𝑑ref /𝛼
subject to 𝐸⊤𝑑 = 𝛾𝑃⊤𝜇 + 1 − 𝛾 𝜈0

Φ⊤𝑑 = Φ⊤𝜇
Dual LP:

minimize 1 − 𝛾 𝜈0, 𝑉𝜃 +
1

𝜂
log 𝔼 𝑥,𝑎 ∼𝜇ref

𝑒𝜂Δ𝜃 𝑥,𝑎

with 𝑉𝜃 𝑥 =
1

𝛼
log σ𝑎 𝜋ref 𝑎 𝑥 𝑒𝛼𝑄𝜃 𝑥,𝑎

DERIVATION OF Q-REPS
Q-REPS adds two major components to this LP:

• Linear function-approximation
• Regularization

Φ: feature matrix with 
rows 𝜑 𝑥, 𝑎 ∈ ℝ𝑚

Δ𝜃: Bellman error 
Δ𝜃 = 𝑟 + 𝛾𝑃𝑉𝜃 − 𝑄𝜗

𝐻: conditional entropy

𝐻 𝑑 𝑑′ = σ𝑥,𝑎 𝑑 𝑥, 𝑎 log
𝜋𝑑(𝑥,𝑎)

𝜋𝑑′(𝑥,𝑎)



•Adding no regularization on 𝑑: Q-functions all collapse to 𝑉!

•Using 𝐷(𝑑|𝑑ref) instead of 𝐻(𝑑|𝑑ref): no closed form for 𝑉 and 
extra terms in the objective

•Relaxing all primal constraints: leads to parametrization of 𝑉
which is unnecessary due to closed-form expression

•Replacing penalty by trust-region constraint 𝐷 𝜇 𝜇𝑘 ≤ 𝛽: very 
sensitive to noise & convergence cannot be guaranteed

SOME FAILED IDEAS
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• Convex loss function for policy eval
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•REPS is awesome:
• Principled mirror-descent algorithm

• Convex loss function for policy eval

•Q-REPS is even more awesome:
• Q-function enables tractable policy updates!

• Guarantees on bias & error propagation (mostly also hold for REPS too)

• Efficient and robust implementation via two-player game perspective

•Lots of open questions!
• Improve theory and implementation details

• Large-scale experiments

• Adding exploration and dealing with constraints…

SUMMARY

The Logistic Bellman 
Error is the future!!!



THANKS!!!!



Appendix



•Assume access to a feature map 𝜑:𝒳 ×𝒜 → ℝ𝑑

•Reward function can be written as 𝑟 𝑥, 𝑎 = 𝜑 𝑥, 𝑎 , 𝜃𝑟

•Transition function can be written as
𝑃 𝑥′ 𝑥, 𝑎 = 𝜑 𝑥, 𝑎 ,𝑚 𝑥′

for some 𝑚 𝑥′ ∈ ℝ𝑑
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•Assume access to a feature map 𝜑:𝒳 ×𝒜 → ℝ𝑑

•Reward function can be written as 𝑟 𝑥, 𝑎 = 𝜑 𝑥, 𝑎 , 𝜃𝑟

•Transition function can be written as
𝑃 𝑥′ 𝑥, 𝑎 = 𝜑 𝑥, 𝑎 ,𝑚 𝑥′

for some 𝑚 𝑥′ ∈ ℝ𝑑

• In matrix form:
𝑟 = Φ𝜃𝑟 , 𝑃 = Φ𝑀,

FACTORED LINEAR MDPS

Φ =

𝜑 𝑥, 𝑎 1

𝜑 𝑥, 𝑎 2

⋮
𝜑 𝑥, 𝑎 𝑁

𝑀 =

𝑚 𝑥1
𝑚 𝑥2
⋮

𝑚(𝑥𝐾)
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𝑄𝜋 = 𝑟 + 𝑃𝑉𝜋 = Φ𝜃𝑟 +Φ𝑀𝑉𝜋 = Φ 𝜃𝑟 +𝑀𝑉𝜋 = Φ𝜃𝜋

•Plugged into the LP:
maximize 𝜇, 𝑟
subject to 𝐸⊤𝑑 = 𝑃⊤𝜇

Φ⊤𝑑 = Φ⊤𝜇
𝜇 ∈ Δ𝒳×𝒜

• If 𝑃 is linear, all feasible 𝑑’s are stationary:
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•All action-value functions are expressible by the features:
𝑄𝜋 = 𝑟 + 𝑃𝑉𝜋 = Φ𝜃𝑟 +Φ𝑀𝑉𝜋 = Φ 𝜃𝑟 +𝑀𝑉𝜋 = Φ𝜃𝜋

•Plugged into the LP:
maximize 𝜇, 𝑟
subject to 𝐸⊤𝑑 = 𝑃⊤𝜇

Φ⊤𝑑 = Φ⊤𝜇
𝜇 ∈ Δ𝒳×𝒜

• If 𝑃 is linear, all feasible 𝑑’s are stationary:
𝐸⊤𝑑 = 𝑃⊤𝜇 = 𝑀⊤Φ⊤𝜇 = 𝑀⊤Φ⊤𝑑 = 𝑃⊤𝑑

SOME USEFUL PROPERTIES

Primal realizability

Dual realizability


