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Abstract

In many combinatorial problems one may need to model the diversity or similarity of
sets of assignments. For example, one may wish to maximise or minimise the number of
distinct values in a solution. To formulate problems of this type we can use soft variants of
the well known AllDifferent and AllEqual constraints. We present a taxonomy of six
soft global constraints, generated by combining the two latter ones and the two standard
cost functions, which are either maximised or minimised. We characterise the complexity
of achieving arc and bounds consistency on these constraints, resolving those cases for
which NP-hardness was neither proven nor disproven. In particular, we explore in depth
the constraint ensuring that at least k pairs of variables have a common value. We show
that achieving arc consistency is NP-hard, however bounds consistency can be achieved in
polynomial time through dynamic programming. Moreover, we show that the maximum
number of pairs of equal variables can be approximated by a factor of 1

2 with a linear time
greedy algorithm. Finally, we provide a fixed parameter tractable algorithm with respect
to the number of values appearing in more than two distinct domains. Interestingly, this
taxonomy shows that enforcing equality is harder than enforcing difference.

1. Introduction

Constraints for reasoning about equality and difference within assignments to a set of vari-
ables are ubiquitous in constraint programming. In many settings, one needs to enforce a
given degree of diversity or similarity in a solution. For example, in a university timetabling
problem we will want to ensure that all courses taken by a particular student are held at
different times. Similarly, in meeting scheduling we will want to ensure that the participants
of the same meeting are scheduled to meet at the same time and in the same place. Some-
times, when the problem is over-constrained, we might wish to maximise the extent to which
these constraints are satisfied. Consider again our timetabling example: we might wish to
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maximise the number of courses that are scheduled at different times when a student’s
preferences cannot all be met.

In a constraint programming setting requirements on the diversity and similarity amongst
variables can be specified using global constraints. One of the most commonly used global
constraints is the AllDifferent (Régin, 1994), which enforces that all variables take pair-
wise different values. A soft version of the AllDifferent constraint, named SoftAllDiff,
has been proposed by Petit, Régin, and Bessiere (2001). They proposed two cost metrics
for measuring the degree of satisfaction of the constraint, which are to be minimised or
maximised: graph- and variable-based cost. These two cost metrics are generic and widely
used (e.g., van Hoeve, 2004). The former counts the number of equalities, whilst the lat-
ter counts the number of variables to change in order to satisfy the corresponding hard
constraint. When we wish to enforce that a set of variables take equal values, we can
use the AllEqual, or its soft variant for the graph-based cost, the SoftAllEqual con-
straint (Hebrard, O’Sullivan, & Razgon, 2008), or its soft variant for the variable-based
cost, the AtMostNValue constraint (Beldiceanu, 2001).

When considering these two constraints (AllDifferent and AllEqual), these two
costs (graph-based and variable-based) and objectives (minimisation and maximisation) we
can define eight algorithmic problems related to constraints of difference and equality. In
fact, because the graph-based costs of AllDifferent and AllEqual are dual, only six
distinct problems are thus defined. The structure of this class of constraints is illustrated
in Figure 1. For each one, we give the complexity of the best known algorithm for achiev-
ing ac and bc. Three of these problems were studied in the past: minimising the cost of
SoftAllDiff variable (Petit et al., 2001) and graph-based cost (van Hoeve, 2004) is poly-
nomial whilst maximising the variable-based cost of SoftAllDiff is NP-hard (Bessiere,
Hebrard, Hnich, Kiziltan, & Walsh, 2006) for ac and polynomial (Beldiceanu, 2001) for
bc. A fourth one, maximising the variable-based cost of the SoftAllEqual constraint,
can directly be mapped to a known problem: the Global Cardinality constraint. In
this paper,1 we introduce two efficient algorithms for achieving, respectively, Arc consis-
tency (ac) and Bounds consistency (bc) on the fifth case, minimising the variable-based
cost for SoftAllEqual. Moreover, the computational complexity of the last remaining
case, maximising the graph-based cost for SoftAllDiff (or, equivalently, minimising the
graph-based cost for SoftAllEqual) was still unknown. Informally, this problem is to
maximise the number of pairs of variables assigned to a common value. It turns out to be
a challenging and interesting problem, in that it is hard but yet can be addressed in several
ways. In particular, we show that:

• Finding a solution with at least k pairs of equal variables is NP-complete, hence
achieving ac on the corresponding constraint is NP-hard.

• When domains are contiguous, it can be solved in a polynomial number of steps
through dynamic programming, hence achieving bc on the corresponding constraint
is polynomial.

• There exists a linear approximation by a factor of 1
2 for the general case.

1. Part of the material presented in this paper is based on two conference publications (Hebrard et al.,
2008; Hebrard, Marx, O’Sullivan, & Razgon, 2009).
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• If no value appears in the domains of more than two distinct variables, then the
problem can be solved by a general matching, thus defining another tractable class.

• There exists a fixed parameter tractable algorithm for this problem for a parameter
k equal to the number of values that appear in more than two distinct domains.

Moreover, we show that the constraint defined by setting a lower bound on the graph-
based cost of SoftAllEqual can be used to efficiently find a set of similar solutions to a
set of problems, for instance to promote stability or regularity. Similarly, the dual constraint
(SoftAllDiff) can be used to find a set of diverse solutions, for instance to sample a set
of configurations. Notice that these two applications have motivated, in part, our choice of
cost metrics.

The remainder of this paper is organised as follows. In Section 2 we introduce the neces-
sary technical background. A complete taxonomy of constraints of equality and difference,
based on results by other authors as well as original material is presented in Section 3. Then,
in the following sections, we present the new results allowing us to close the gaps in this
taxonomy. First, in Section 4 we present two efficient algorithm for achieving ac and bc
when minimising the variable-based cost of SoftAllEqual. Second, in Section 5 we give
a proof of NP-hardness for the problem of achieving ac when maximising the graph-based
cost of SoftAllDiff. Third, in Section 6 we present a polynomial algorithm to achieve
bc on the same constraint. Finally, in the remaining sections, we explore the algorithmic
properties of this preference cost. In Section 7, we show that a natural greedy algorithm
approximates the maximum number of equalities within a factor of 1

2 , and that its com-
plexity can be brought down to linear time. Next, in Section 8, we identify a polynomial
class for this constraint. Then, in Section 9, we identify a parameter based on this class
and show that the SoftAllEqualG constraint is fixed-parameter tractable with respect
to this parameter. Finally, in Section 10, we show how the results obtained in this paper
can be applied to sample solutions or, conversely, to promote stability. In particular, we
describe two constructions using SoftAllDiffminG and SoftAllEqualminG respectively.
Concluding remarks are made in Section 11.

2. Background

In this section we present the necessary background required by the reader and introduce
the notation we use throughout the paper.

2.1 Constraint Satisfaction

A constraint satisfaction problem (CSP) is a triplet P = (X ,D, C) where X is a set of
variables, D is a mapping of variables to finite sets of values and C is a set of constraints that
specify allowed combinations of values for subsets of variables. Without loss of generality,
we assume D(X) ⊂ Z for all X ∈ X , and we denote by min(X) and max(X) the minimum
and maximum values in D(X), respectively. An assignment of a set of variables X is a set
of pairs S such that |X | = |S| and for each X ∈ X , there exists (X, v) ∈ S with v ∈ D(X).
A constraint C ∈ C is arc consistent (ac) iff, when a variable in the scope of C is assigned
any value, there exists an assignment to the other variables in C such that C is satisfied.
This satisfying assignment is called a domain support for the value. Similarly, we call a
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range support an assignment satisfying C, but where values, instead of being taken from
the domain of each variable (v ∈ D(X)), can be any integer between the minimum and
maximum of this domain following the natural order on Z (v ∈ [min(X), . . . ,max(X)]) . A
constraint C ∈ C is range consistent (rc) iff every value of every variable in the scope of C
has a range support. A constraint C ∈ C is bounds consistent (bc) iff for every variable X
in the scope of C, min(X) and max(X) have a range support. Given a CSP P = (X ,D, C),
we shall use the following notation throughout the paper: n shall denote the number of
variables, i.e., n = |X |; m shall denote the number of distinct unary assignments, i.e.,
m =

∑
X∈X |D(X)|; Λ shall denote the total set of values, i.e., Λ =

⋃
X∈X D(X); finally, λ

shall denote the total number of distinct values, i.e., λ = |Λ|.

2.2 Soft Global Constraints

Adding a cost variable to a constraint to represent its degree of violation is now com-
mon practice in constraint programming. This model was introduced by Petit, Régin, and
Bessiere (2000). It offers the advantage of unifying hard and soft constraints since arc con-
sistency, along with other types of consistencies, can be applied to such constraints with
no extra effort. As a consequence, classical constraint solvers can model over-constrained
problems in this way without modification. This approach was applied to a number of
other constraints, for instance by van Hoeve, Pesant, and Rousseau (2006). Several cost
metrics have been explored for the AllDifferent constraint, as well as several others
(e.g., Beldiceanu & Petit, 2004). It is important, if one uses such a unifying model, that
the cost metric chosen can be evaluated in polynomial time given a complete assignment of
the variables that are constrained. This is the case for the two metrics considered in this
paper for the constraints AllDifferent and AllEqual.

The variable-based cost counts how many variables need to change in order to obtain a
valid assignment for the hard constraint. It can be viewed as the smallest Hamming distance
with respect to a satisfying assignment. The graph-based cost counts how many times a
component of a decomposition of the constraint is violated. Typically these components
correspond to edges of a decomposition graph, e.g. for an AllDifferent constraint, the
decomposition graph is a clique and an edge is violated if and only if both variables connected
by this edge share the same value. The following example, still for the AllDifferent
constraint, shows two solutions involving four variables X1, . . . , X4 each with domain {a, b}:

S1 = {(X1, a), (X2, b), (X3, a), (X4, b)}.

S2 = {(X1, a), (X2, b), (X3, b), (X4, b)}.

In both solutions, at least two variables must change (e.g., X3 and X4) to obtain a valid
solution. Therefore, the variable-based cost is 2 for S1 and S2. However, in S1 only two
edges are violated, (X1, X3) and (X2, X4), whilst in S2, three edges are violated, (X2, X3),
(X2, X4) and (X3, X4). Thus, the graph-based cost of S1 is 2 whereas it is 3 for S2.

2.3 Parameterised Complexity

We shall use the notion of parameterised complexity in Section 9. We refer the reader
to Niedermeier’s (2006) book for a comprehensive introduction. Given a problem A, a

4



Soft Constraints of Difference and Equality

parameterised version of A is obtained by specifying a parameter of this problem and getting
as additional input a non-negative integer k which restricts the value of this parameter. The
resulting parameterised problem 〈A, k〉 is fixed-parameter tractable (FPT) with respect to
k if it can be solved in time f(k) ∗ nO(1), where f(k) is a function depending only on k.
When the size of the problem is significantly larger than the parameter k, a fixed-parameter
algorithm essentially has polynomial behaviour. For instance if f(k) = 2k then, as long as
k is bounded by log n, the problem can be solved in polynomial time.

3. Taxonomy

In this section we introduce a taxonomy of soft constraints based on AllDifferent and
AllEqual. We consider the eight algorithmic problems related to constraints of differ-
ence and equality defined by combining these two constraints, two costs (graph-based and
variable-based), and two objectives (minimisation and maximisation). In fact, because the
graph-based costs of AllDifferent and AllEqual are dual, only six different problems
are defined. Observe that we consider only costs defined through inequalities, rather than
equalities. There are several reasons for doing so. First, reasoning about the lower bound or
the upper bound of the cost variable can yield two extremely different problems, and hence
different algorithmic solutions. For instance, we shall see that in some cases the problem is
tractable in one direction, and NP-hard in the other direction. When reasoning about cost
equality, one will often separate the inference procedures relative to the lower bound, up-
per bound, and intermediate values. Reasoning about lower and upper bounds is sufficient
to model an equality although it might hinder domain filtering when intermediate values
for the cost are forbidden. We thus cover equalities in a restricted way, albeit arguably
reasonable in practice. Indeed, when dealing with costs and objectives, reasoning about
inequalities and bounds is more useful in practice than imposing (dis)equalities.

We close the last remaining cases: the complexity of achieving ac and bc SoftAllEqualminV

in Section 4, that of achieving ac on SoftAllEqualminG in Section 5 and that of achiev-
ing bc on SoftAllEqualminG in Section 6. Based on these results, Figure 1 can now be
completed (fourth and fifth columns).

The next six paragraphs correspond to the six columns of Figure 1, that is, to the twelve
elements of the taxonomy. For each of them, we briefly outline the current state of the art,
using the following assignment as a recurring example to illustrate the various costs:

S3 = {(X1, a), (X2, a), (X3, a), (X4, a), (X5, b), (X6, b), (X7, c)}.

3.1 SoftAllDiff: Variable-based cost, Minimisation

Definition 1 (SoftAllDiffminV )

SoftAllDiffminV ({X1, . . . , Xn}, N)⇔ N ≥ n− |{v | ∃Xi = v}|.

Here the cost to minimise is the number of variables that need to be changed in order
to obtain a solution satisfying an AllDifferent constraint. For instance, the cost of S3

is 4 since three of the four variables assigned to a as well as one of the variables assigned
to b must change. This objective function was first studied by Petit et al. (2001), and an
algorithm for achieving ac in O(n

√
m) was introduced. To the best of our knowledge, no
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Figure 1: Complexity of optimising difference and equality – first row: ac, second row: bc.
Parameter n denotes the number of variables, m the sum of the domain sizes and
λ the number of distinct values. References: [1] (Petit et al., 2001), [2] (Bessiere
et al., 2006), [3] (Beldiceanu, 2001), [4] (van Hoeve, 2004), [5] (Hebrard et al.,
2008), [6] (Hebrard et al., 2009), [7] (present paper), [8] (Quimper et al., 2004).

algorithm with better time complexity for the special case of bounds consistency has been
proposed for this constraint. Notice however that Mehlhorn and Thiel’s (2000) algorithm
achieves bc on the AllDifferent constraint with an O(n log n) time complexity. The
question of whether this algorithm could be adapted to achieve bc on SoftAllDiffminV

remains open.

3.2 SoftAllDiff: Variable-based cost, Maximisation

Definition 2 (SoftAllDiffmaxV )

SoftAllDiffmaxV ({X1, . . . , Xn}, N)⇔ N ≤ n− |{v | ∃Xi = v}|.

Here the same cost is to be maximised. In other words, we want to minimise the number
of distinct values assigned to the given set of variables, since the complement of this number
to n is exactly the number of variables to modify in order to obtain a solution satisfying
an AllDifferent constraint. For instance, the cost of S3 is 4 and the number of distinct
values is 7 − 4 = 3. This constraint was studied under the name AtMostNValue. An
algorithm in O(n log n) to achieve bc was proposed by Beldiceanu (2001), and a proof that
achieving ac is NP-hard was given by Bessiere et al. (2006).
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3.3 SoftAllDiff: Graph-based cost, Minimisation & SoftAllEqual:
Graph-based cost, Maximisation

Definition 3 (SoftAllDiffminG ≡ SoftAllEqualmaxG )

SoftAllDiffminG ({X1, . . . , Xn}, N)⇔ N ≥ |{{i, j} | Xi = Xj & i < j}|.

Here the cost to minimise is the number of violated constraints when decomposing
AllDifferent into a clique of binary NotEqual constraints. For instance, the cost
of S3 is 7 since four variables share the value a (six violations) and two share the value
b (one violation). Clearly, it is equivalent to maximising the number of violated binary
Equal constraints in a decomposition of a global AllEqual. Indeed, these two costs
are complementary to

(
n
2

)
of each other (on S3: 7 + 14 = 21). An algorithm in O(nm)

for achieving ac on this constraint was introduced by van Hoeve (2004). Again, to our
knowledge there is no algorithm improving this complexity for the special case of bc.

3.4 SoftAllEqual: Graph-based cost, Minimisation & SoftAllDiff:
Graph-based cost Maximisation

Definition 4 (SoftAllEqualminG ≡ SoftAllDiffmaxG )

SoftAllEqualminG ({X1, . . . , Xn}, N)⇔ N ≥ |{{i, j} | Xi 6= Xj & i < j}|.

Here we consider the same two complementary costs, however we aim at optimising in
the opposite way. In Section 5 we show that achieving ac on this constraint is NP-hard and,
in Section 6 we show that, when domains are contiguous intervals, computing the optimal
cost can be done in O(min(nλ2, n3)). As a consequence, bc can be achieved in polynomial
time.

3.5 SoftAllEqual: Variable-based cost, Minimisation

Definition 5 (SoftAllEqualminV )

SoftAllEqualminV ({X1, . . . , Xn}, N)⇔ N ≥ n−max
v∈Λ

(|{i | Xi = v}|).

Here the cost to minimise is the number of variables that need to be changed in order to
obtain a solution satisfying an AllEqual constraint. For instance, the cost of S3 is 3 since
four variables already share the same value. This is equivalent to maximising the number of
variables sharing a given value. Therefore this bound can be computed trivially by counting
the occurrences of every value in the domains. However, pruning the domains according
to this bound without degrading the time complexity is not as trivial. In Section 4, we
introduce two filtering algorithms, achieving ac and rc in the same complexity as that of
counting values.

3.6 SoftAllEqual: Variable-based cost, Maximisation

Definition 6 (SoftAllEqualmaxV )

SoftAllEqualmaxV ({X1, . . . , Xn}, N)⇔ N ≤ n−max
v∈Λ

(|{i | Xi = v}|).
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Here the same cost has to be maximised. In other words we want to minimise the
maximum cardinality of each value. For instance, the cost of S3 is 3, that is, the complement
to n of the maximum cardinality of a value (3 = 7 − 4). This is exactly equivalent to
applying a Global Cardinality constraint (considering only the upper bounds on the
cardinalities). Two algorithms, for achieving ac and bc on this constraint and running in
O(
√
nm) and O(n log n) respectively, was introduced by Quimper et al. (2004).

4. The Complexity of Arc and Bounds Consistency on SoftAllEqualminV

Here we show how to achieve ac, rc and bc on the SoftAllEqualminV constraints (see
Definition 5). This constraint is satisfied if and only if n minus the cardinality of any
set of variables assigned to a single value is less than or equal to the value of the cost
variable N . In other words, it is satisfied if there are at least k variables sharing a value,
where k = n − max(N). Therefore, for simplicity sake, we shall consider the following
equivalent formulation, where N is a lower bound on the complement to n of the same cost
(N ′ = n−N):

N ′ ≤ max
v∈Λ

(|{i | Xi = v}|).

We shall see that to filter the domain of N ′ and the Xi’s we need to compute two properties:

1. An upper bound k∗ on the number of occurrences amongst all values.

2. The set of values that can actually appear k∗ times.

Computing the set of values that appear in the largest possible number of variable domains
can be performed trivially in O(m), by counting the number of occurrences of every value,
i.e., the number of variables whose domain contains v.

However, if domains are discrete intervals defined by lower and upper bounds, it can be
done even more efficiently. Given two integers a and b, a ≤ b, we say that the set of all
integers x, a ≤ x ≤ b, is an interval and denote it by [a, b]. In the rest of this section we
shall assume that the overall set of values values Λ =

⋃
X∈X D(X) is the interval [1, λ].

Definition 7 (Occurrence function and derivative) Given a constraint network P =
(X ,D, C), the occurrence function occ is the mapping from values in Λ to N defined as
follows:

occ(v) = |{X | X ∈ X & v ∈ doms(X)}|.

The “ derivative” of occ, δocc, maps each value v ∈ Λ to the difference between the value of
occ(v − 1) and occ(v):

δocc(0) = 0,
δocc(v) = occ(v)− occ(v − 1).

We give an example of the occurrence function for a set of variables with interval domains
in Figure 2.

Algorithm 1 computes occ−1, that is, the inverse of the occurrence function, which maps
every element in the interval [1, n] to the set of values appearing that many times. It runs
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Figure 2: A set of intervals (a) and the corresponding occurrence function (b).

Algorithm 1: Computing the inverse occurrence function.
Data: A set of variables: X
Result: occ−1 : [1, n] 7→ 2Λ

δocc(v)← ∅;
1 foreach X ∈ X do

δocc(min(X))← δocc(min(X)) + 1;
δocc(max(X) + 1)← δocc(max(X) + 1)− 1;

2 ∀x ∈ [1, n], occ−1(x)← ∅;
x← 0;
pop first element (v, a) of δocc;
repeat

pop first element (w, b) of δocc;
x← x+ δocc(a);
occ−1(x)← occ−1(x) ∪ [a, b− 1];
a← b;

until δocc = ∅;

in O(n log n) worst-case time complexity if we assume it is easy to extract both an upper
bound (k∗ ≥ N ′) and the set of values that can appear k∗ times from occ−1.

The idea behind this algorithm, which we shall reuse throughout this paper, is that when
domains are given as discrete intervals one can compute the non-null values of the derivative
δocc of the occurrence function occ in O(n log n) time. The procedure is closely related to the
concept of sweep algorithms (Beldiceanu & Carlsson, 2001) used, for instance, to implement
filtering algorithms for the Cumulative constraint. Instead of scanning the entire horizon,
one can jump from an event to the next, assuming that nothing changes between two events.
As in the case of the Cumulative constraint, events here correspond to start and end points
of the domains. In fact, it is possible to compute the same lower bound, with the same
complexity, by using Petit, Régin, and Bessiere’s (2002) Range-based Max-CSP Algorithm
(RMA)2 on a reformulation as a Max-CSP. Given a set of variables X , we add an extra
variable Z whose domain is the union of all domains in X : D(Z) = Λ =

⋃
X∈X D(X). Then

2. We thank the anonymous reviewer who made this observation.
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we link it to other variables in X through binary equality constraints:

∀X ∈ X , Z = X.

There is a one-to-one mapping between the solutions of this Max-CSP and the satisfying as-
signments of a SoftAllEqualminV constraint on (X , N), where the value of N corresponds
to the number of violated constraints in the Max-CSP. The lower bound on the number of
violations computed by RMA and the lower bound k∗ on N computed in Algorithm 1 are,
therefore, the same. Moreover the procedures are essentially equivalent, i.e., modulo the
modelling step. Algorithm 1 can be seen as a particular case of RMA: the same ordered set
of intervals is computed, and subsequently associated with a violation cost. However, we
use our formalism, since the notion of occurrence function and its derivative is important
and used throughout the paper.

We first define a simple data structure that we shall use to compute and represent the
function δocc. A specific data structure is required since indexing the image of δocc(v) by the
value v would add a factor of λ to the (space and therefore time) complexity. The non-zero
values of δocc are stored as a list of pairs whose first element is a value v ∈ [1, . . . , λ] and
second element stands for δocc(v). The list is maintained in increasing order of the pair’s
first element. Given an ordered list δocc = [(v1, o1), . . . , (vk, ok)], the assignment operation
δocc(vi)← oi can therefore been done in O(log |δocc|) steps as follows:

1. The rank r of the pair (vj , oj) such that vj is minimum and vj ≥ vi is computed
through a dichotomic search.

2. If vi = vj , the pair (vj , oj) is removed.

3. The pair (vi, oi) is inserted at rank r.

Moreover, one can access the element with minimum (resp. maximum) first element in
constant time since it is first (resp. last) in the list. Finally, the value of δocc(vi) is oi if
there exists a pair (vj , oj) in the list, and 0 otherwise. Computing this value can also be
done in logarithmic time.

The derivative δocc(v) is computed in Loop 1 of Algorithm 1 using the assignment
operator defined above. Observe that if D(X) = [a, b], then X contributes only to two
values of δocc: it increases δocc(a) by 1 and decreases δocc(b + 1) by 1. For every value w
such that there is no X with min(X) = w or max(X) + 1 = w, δocc(w) is null. In other
words, we can define δocc(v) for any value v, as follows:

δocc(v) = (|{i | min(Xi) = v}| − |{i | max(Xi) = v − 1}|).

Therefore, by going through every variable X ∈ X , we can compute the non-null values of
δocc in time O(n log n) using the simple list structure described above.

Then, starting from Line 2, we compute occ−1 by going through the non-zero values v
of the derivative, i.e. such that δocc(v) 6= 0, in increasing order of v. Recall that we use an
ordered list, so this is trivially done in linear time. By definition, the occurrence function is
constant on the interval defined by two such successive values. Since the number of non-zero
values of δocc is bounded by O(n), the overall worst-case time complexity is in O(n log n).
We use Figure 3 (a,c & d) to illustrate an execution of Algorithm 1. First, six variables and
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δocc(1) = +2
δocc(15) = +2
δocc(41) = −2
δocc(60) = +1
δocc(70) = +1
δocc(71) = −1
δocc(91) = −1
δocc(101) = −2

(c) Derivative of the occurrence function.

occ−1(2) = {[1, 14] ∪ [41, 59] ∪ [91, 100]}
occ−1(3) = {[60, 69] ∪ [71, 90]}
occ−1(4) = {[15, 40] ∪ [70, 70]}

(d) Inverse of the occurrence function.

Figure 3: Execution of Algorithm 1: A set of intervals (a). The same set of intervals where
inconsistent sub-intervals for a lower bound on the number of equalities of 4 (N’
≥ 4) are represented as dashed lines (b). (c) and (d) represent the derivative, and
the inverse of the occurrence function for the initial set of intervals, respectively.

their domains are represented in Figure 3(a). Then, in Figures 3(c) and 3(d) we show the
derivative and the inverse, respectively, of the occurrence function.

Alternatively, when λ < n log n, it is possible to compute occ−1 in O(n+λ) by replacing
the data structure used to store δocc by a simple array, indexed by values in [1, λ]. Accessing
and updating a value of δocc can thus be done in constant time.

Now we show how to prune the variables in X with respect to this bound without
degrading the time complexity. According to the method used we can, therefore, achieve
ac or rc in a worst-case time complexity of O(m) or O(min(n+ λ, n log n), respectively.

Theorem 1 Enforcing ac (resp. rc) on SoftAllEqualminV can be achieved in in O(m)
steps (resp. O(min(n+ λ, n log n)).

Proof. We suppose, without loss of generality, that the current lower bound on N ′ is k.
We first compute the inverse occurrence function either by counting values, or considering
interval domains using Algorithm 1. From this we can define the set of values with highest
number of occurrences. Let this number of occurrences be k∗, and the corresponding set of
values be V (i.e. occ−1(k∗) = V ). Then there are three cases to consider:

11
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1. First, if every value appears in strictly fewer than k domains (k∗ < k) then the
constraint is violated.

2. Second, if at least one value v appears in the domains of at least k + 1 variables
(k∗ > k), then we can build a support for every value w ∈ D(X). Let v ∈ V , we
assign all the variables in X \X with v when possible. The resulting assignment has
at least k occurrences of v, hence it is consistent. Consequently, since k∗ > k, every
value is consistent.

3. Otherwise, if neither of the two cases above hold, we know that no value appears in
more than k domains, and that at least one appears k times. Recall that V denotes
the set of such values. In this case, the pair (X, v) is inconsistent if and only if
v 6∈ V & V ⊂ D(X).

We first suppose that this condition does not hold and show that we can build a
support. If v ∈ V then clearly we can assign every possible variable to v and achieve
a cost of k. If V 6⊂ D(X), then we consider w such that w ∈ V and w 6∈ D(X). By
assigning every variable with w when possible we achieve a cost of k no matter what
value is assigned to X.

Now we suppose that v 6∈ V & V ⊂ D(X) holds and show that (X, v) does not have
an ac support. Indeed, once X is assigned to v the domains are such that no value
appears in k domains or more, since every value in V has now one fewer occurrence,
hence we are back to Case 1.

Computing the set V of values satisfying the condition above can be done easily once the
inverse occurrence function has been computed. On the one hand, if this function occ−1

has been computed by counting every value in every domain, then the supports used in the
proofs are all domain supports, hence ac is achieved. On the other hand, if domains are
approximated by their bounds and Algorithm 1 is used instead, the supports are all range
supports, hence rc is achieved. In Case 3, the domain can be pruned down to the set V of
values whose number of occurrences is k, as illustrated in Figure 3 (b). 2

Corollary 1 Enforcing bc on SoftAllEqualminV can be achieved in O(min(n+λ, n log n)
steps.

Proof. This is a direct implication of Theorem 1. 2

The proof of Theorem 1 yields a domain filtering procedure. Algorithm 2 achieves either
ac or rc depending on the version of Algorithm 1 used in Line 1 to compute the inverse
occurrence function. The later function occ−1 is then used in Line 2, 3 and 4 to, respectively,
catch a global inconsistency, prune the upper bound of N ′ and prune the domains of the
variables in X .

Figure 3(b) illustrates the pruning that one can achieve on X provided that the lower
bound on N ′ is equal to 4. Dashed lines represent inconsistent intervals. The set V of
values used in Line 4 of Algorithm 2 is occ−1(4) = {[15, 40] ∪ [70, 70]}.

12
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Algorithm 2: Propagation of SoftAllEqualminV ({X1, . . . , Xn}, N ′).
1 occ−1 ← Algorithm 1;
ub← n;
while occ−1(ub) = ∅ do

ub← ub− 1;

2 if min(N ′) > ub then fail;
else

3 max(N ′)← ub;
if min(N ′) = max(N ′) then

V ← occ−1(min(N ′));
4 foreach X ∈ X do if V ⊂ D(X) then D(X)← V ;

5. The Complexity of Arc Consistency on SoftAllEqualminG

Here we show that achieving ac on SoftAllEqualminG is NP-hard. In order to achieve
ac we need to compute an arc consistent lower bound on the cost variable N constrained
as follows:

N ≤ |{{i, j} | Xi 6= Xj & i < j}|.

In other words, we want to find an assignment of the variables in X minimising the number
of pairwise disequalities, or maximising the number of pairwise equalities. We consider
the corresponding decision problem (SoftAllEqualminG -decision), and show that it is
NP-hard through a reduction from 3dMatching (Garey & Johnson, 1979).

Definition 8 (SoftAllEqualminG -decision)
Data: An integer N , a set X of variables.
Question: Does there exist a mapping s : X 7→ Λ such that ∀X ∈ X , s[X] ∈ D(X) and
|{{i, j} | s[Xi] = s[Xj ] & i 6= j}| ≥ N?

Definition 9 (3dMatching)
Data: An integer K, three disjoint sets X,Y, Z, and T ⊆ X × Y × Z.
Question: Does there exist M ⊆ T such that |M | ≥ K and ∀m1,m2 ∈M, ∀i ∈ {1, 2, 3}, m1[i] 6=
m2[i]?

Theorem 2 (The Complexity of SoftAllEqualminG ) Finding a satisfying assignment
for the SoftAllEqualminG constraint is NP-complete even if no value appears in more
than three domains.

Proof. The problem SoftAllEqualminG -decision is clearly in NP: checking the number
of equalities in an assignment can be done in O(n2) time.

We use a reduction from 3dMatching to show completeness. Let P = (X,Y, Z, T,K)
be an instance of 3dMatching, where: K is an integer; X,Y, Z are three disjoint sets such
that X ∪ Y ∪ Z = {x1, . . . , xn}; and T = {t1, . . . , tm} is a set of triplets over X × Y × Z.
We build an instance I of SoftAllEqualminG as follows:

1. Let n = |X|+ |Y |+ |Z|, we build n variables {X1, . . . , Xn}.

2. For each tl = 〈xi, xj , xk〉 ∈ T , we have l ∈ D(Xi), l ∈ D(Xj) and l ∈ D(Xk).

13
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3. For each pair (i, j) such that 1 ≤ i < j ≤ n, we put the value (|T |+ (i− 1) ∗ n+ j) in
both D(Xi) and D(Xj).

We show there exists a matching of P of size K if and only if there exists a solution of
I with b3K+n

2 c equalities. We refer to “a matching of P” and to a “solution of I” as “a
matching” and “a solution” throughout this proof, respectively.
⇒: We show that if there exists a matching of cardinality K then there exists a solution
with at least b3K+n

2 c equalities. Let M be a matching of cardinality K. We build a solution
as follows. For all tl = 〈xi, xj , xk〉 ∈ M we assign Xi, Xj and Xk to l (item 2 above).
Observe that there remain exactly n− 3K unassigned variables after this process. We pick
an arbitrary pair of unassigned variables and assign them with their common value (item 3
above), until at most one variable is left (if one variable is left we assign it to an arbitrary
value). Therefore, the solution obtained in this way has exactly b3K+n

2 c equalities, 3K from
the variables corresponding to the matching and bn−3K

2 c for the remaining variables.
⇐: We show that if the cardinality of the maximal matching is K, then there is no solution
with more than b3K+n

2 c equalities. Let S be a solution. Furthermore, let L be the number
of values appearing three times in S. Observe that this set of values corresponds to a
matching. Indeed, a value l appears in three domains D(Xi),D(Xj) and D(Xk) if and only
if there exists a triplet tl = 〈xi, xj , xk〉 ∈ T (item 2 above). Since a variable can only be
assigned to a single value, the values appearing three times in a solution form a matching.
Moreover, since no value appears in more than three domains, all other values can appear
at most twice. Hence the number of equalities in S is less than or equal to b3L+n

2 c, where L
is the size of a matching. It follows that if there is no matching of cardinality greater than
K, there is no solution with more than b3K+n

2 c equalities. 2

Cohen, Cooper, Jeavons, and Krokhin (2004) showed that the language of soft binary
equality constraints is NP-complete, for as few as three distinct values. On the one hand,
Theorem 2 applies to a more specific class of problems where the constraint network formed
by the soft binary constraints is a clique. On the other hand, the proof requires an un-
bounded number of values, these two results are therefore incomparable. However, we shall
see in Section 9 that this problem is fixed parameter tractable with respect to the number
of values, hence polynomial when it is bounded.

6. The Complexity of Bounds Consistency on SoftAllEqualminG

In this section we introduce an efficient algorithm that, assuming the domains are discrete
intervals, computes the maximum possible pairs of equal values in an assignment. We
therefore need to solve the optimisation version of the problem defined in the previous
section (Definition 8):

Definition 10 (SoftAllEqualminG -optimisation)
Data: A set X of variables.
Question: What is the maximum integer K such that there exists a mapping s : X 7→ Λ
satisfying ∀X ∈ X , s[X] ∈ D(X) and |{{i, j} | s[Xi] = s[Xj ] & i 6= j}| = K?

The algorithm we introduce allows us to close the last remaining open complexity question
in Figure 1: bc on the SoftAllEqualminG constraint. We then improve it by reducing the
time complexity thanks to a preprocessing step.
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We use the same terminology as in Section 4, and refer to the set of all integers x such
that a ≤ x ≤ b as the interval [a, b]. Let X be the set of variables of the considered CSP
and assume that the domains of all the variables of X are sub-intervals of [1, λ]. We denote
by ME(X ) the set of all assignments P to the variables of X such that the number of pairs
of equal values of P is the maximum possible. The subset of X containing all the variables
whose domains are subsets of [a, b] is denoted by Xa,b. The subset of Xa,b including all the
variables containing the given value c in their domains is denoted by Xa,b,c. Finally the
number of pairs of equal values in an element of ME(Xa,b) is denoted by Ca,b(X ) or just
Ca,b if the considered set of variables is clear from the context. For notational convenience,
if b < a, then we set Xa,b = ∅ and Ca,b = 0. The value C1,λ(X ) is the number of equal pairs
of values in an element of ME(X ).

Theorem 3 C1,λ(X ) can be computed in O((n+ λ)λ2) steps.

Proof. The problem is solved by a dynamic programming approach: for every a, b such
that 1 ≤ a ≤ b ≤ λ, we compute Ca,b. The main observation that makes it possible to use
dynamic programming is the following: in every P ∈ME(Xa,b) there is a value c (a ≤ c ≤ b)
such that every variable X ∈ Xa,b,c is assigned value c. To see this, let value c be a value
that is assigned by P to a maximum number of variables. Suppose that there is a variable
X with c ∈ D(X) that is assigned by P to a different value, say c′. Suppose that c and
c′ appear on x and y variables, respectively. By changing the value of X from c′ to c,
we increase the number of equalities by x − (y − 1) ≥ 1 (since x ≥ y), contradicting the
optimality of P .

Notice that Xa,b \ Xa,b,c is the disjoint union of Xa,c−1 and Xc+1,b (if c − 1 < a or
c + 1 > b, then the corresponding set is empty). These two sets are independent in the
sense that there is no value that can appear on variables from both sets. Thus it can be
assumed that P ∈ ME(Xa,b) restricted to Xa,c−1 and Xc+1,b are elements of ME(Xa,c−1)
and ME(Xc+1,b), respectively. Taking into consideration all possible values c, we get

Ca,b = max
c,a≤c≤b

((
|Xa,b,c|

2

)
+ Ca,c−1 + Cc+1,b

)
. (1)

In the first step of Algorithm 3, we compute |Xa,b,c| for all values of a, b, c. For each
triple a, b, c, it is easy to compute |Xa,b,c| in time O(n), hence all these values can be
computed in time O(nλ3). However, the running time can be reduced to O((n+ λ)λ2) by
using the same idea as in Algorithm 1. For each pair a, b, we compute the number of
occurrences of each value c by first computing a derivative δa,b. More precisely, we define
δa,b(c) = |Xa,b,c|− |Xa,b,c−1| and compute δa,b(c) for every a < c ≤ b (Algorithm 3, Line 1-2).
Thus by going through all the variables, we can compute the δa,b(c) values for a fixed a, b
and for all a ≤ c ≤ b in time O(n) and we can also compute |Xa,b,a| in the same time
bound. Now it is possible to compute the values |Xa,b,c|, a < c ≤ b in time O(λ) by using
the equality |Xa,b,c| = |Xa,b,c−1|+ δa,b(c) iteratively (Algorithm 3, Line 3).

In the second step of the algorithm, we compute all the values Ca,b. We compute these
values in increasing order of b− a. If a = b, then Ca,b =

(|Xa,a,a|
2

)
. Otherwise, values Ca,c−1

and Cc+1,b are already available for every a ≤ c ≤ b, hence Ca,b can be determined in time
O(λ) using Eq. (1) (Algorithm 3, Line 4). Thus all the values Ca,b can be computed in time
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Algorithm 3: Computing the maximum number of equalities.
Data: A set of variables: X
Result: C1,λ(X )

∀ 1 ≤ a, b, c ≤ λ, δa,b(c)← |Xa,b,c| ← Ca,b ← 0;
foreach k ∈ [0, λ− 1] do

foreach a ∈ [1, λ− k] do
b← a+ k;
foreach X ∈ Xa,b do

1 δa,b(min(X))← δa,b(min(X)) + 1;
2 δa,b(max(X) + 1)← δa,b(max(X) + 1)− 1;

foreach c ∈ [a, b] do
3 |Xa,b,c| ← |Xa,b,c−1|+ δa,b(c);
4 Ca,b ← max(Ca,b, (

`|Xa,b,c|
2

´
+ Ca,c−1 + Cc+1,b));

return C1,λ;

O(λ3), including C1,λ, which is the value of the optimum solution of the problem. Using
standard techniques (storing for each Ca,b a value c that minimises (1)), a third step of the
algorithm can actually produce a variable assignment that obtains the maximum value. 2

Ca,b a = 1 a = 2 a = 3 a = 4

b = 1 1

b = 2 X1,2,1 + C2,2 = 3 0

b = 3 X1,3,1 + C2,3 = 6 0 0

b = 4 X1,4,1 + C2,4 = 16 X2,4,4 + C2,3 = 6 X3,4,4 + C3,3 = 3 1

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

 1  2  3  4

va
ria

ble
s

values

Figure 4: A set of intervals, and the corresponding dynamic programming Table (Ca,b).

Algorithm 3 computes the largest number of equalities one can achieve by assigning a
set of variables with interval domains. It can therefore be used to find an optimal solution
to either SoftAllDiffmaxG or SoftAllEqualminG . Notice that for the latter one needs
to take the complement to

(
n
2

)
in order to get the value of the violation cost. Clearly, it

follows that achieving range or bounds consistency on these two constraints can be done
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in polynomial time, since Algorithm 3 can be used as an oracle for testing the existence of
a range support. We give an example of the execution of Algorithm 3 in Figure 4. A set
of ten variables, from X1 to X10 are represented. Then we give the table Ca,b for all pairs
a, b ∈ [1, λ].

The complexity can be further reduced if λ� n. Here again, we will use the occurrence
function, albeit in a slightly different way. The intuition is that some values and intervals of
values are dominated by other. When the occurrence function is monotonically increasing,
it means that we are moving toward dominating values (they can be taken by a larger
set of variables), and conversely, a monotonic decrease denotes dominated values. Notice
that since we are considering discrete values, some variations may not be apparent in the
occurrence function. For instance, consider two variables X and Y with respective domains
[a, b] and [b + 1, c] such that a ≤ b ≤ c. The occurrence function for these two variables
is constant on [a, c]. However, for our purpose, we need to distinguish between “true”
monotonicity and that induced by the discrete nature of the problem. We therefore consider
some rational values when defining the occurrence function. In the example above, by
introducing an extra point b + 1

2 to the occurrence function, we can now capture the fact
that in fact it is not monotonic on [a, c].

Let X be a set of variables with interval domains in [1, λ]. Consider the occurrence
function occ : Q 7→ [0..n], where Q ⊂ Q is a set of values of the form a/2 for some a ∈ N,
such that min(Q) = 1 and max(Q) = λ. Intuitively, the value of occ(a) is the number of
variables whose domain interval encloses the value a, more formally:

∀a ∈ Q, occ(a) = |{X | X ∈ X ,min(X) ≤ a ≤ max(X)}|.

Such a function, along with the corresponding set of intervals, is depicted in Figure 5.
A crest of the function occ is an interval [a, b] ⊆ Q such that for some c ∈ [a, b], occ is
monotonically increasing on [a, c] and monotonically decreasing on [c, b]. For instance, on
the set intervals represented in Figure 5, [1, 15] is a crest since it is monotonically increasing
on [1, 12] and monotonically decreasing on [12, 15].

Let I be a partition of [1, λ] into a set of intervals such that every element of I is a
crest. For instance, I = {[1, 15], [16, 20], [21, 29], [30, 42]} is such a partition for the set of
intervals shown in Figure 5. We shall map each element of I to an integer corresponding to
its rank in the natural order. We denote by RI(X ) the reduction of X by the partition I.
The reduction has as many variables as X (equation 2 below) but the domains are replaced
with the set of intervals in I that overlap with the corresponding variable in X (equation 3
below). Observe that the domains remain intervals after the reduction.

RI(X ) = {X ′1, . . . , X ′|X |}. (2)

∀X ′i ∈ RI(X ), D(X ′i) = {I | I ∈ I & D(Xi) ∩ I 6= ∅}. (3)

For instance, the set of intervals depicted in Figure 5 can be reduced to the set shown
in Figure 4, where each element in I is mapped to an integer in [1, 4].

Theorem 4 If I is a partition of [1, λ] such that every element of I is a crest of occ, then
ME(X ) = ME(RI(X )).
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X1 in [30,40]

X2 in [21,26]

X3 in [1,13]

X4 in [32,38]

X5 in [9,19]

X6 in [16,40]

X7 in [18,32]

X8 in [7,15]

X9 in [10,26]

X10 in [26,42]

[1 15] [16 20] [21 29] [30 42]
values

Figure 5: Some intervals and the corresponding occ function.

Proof. First, we show that for any optimal solution s ∈ME(X ), we can produce a solution
s′ ∈ME(RI(X )) that has at least as many equalities as s. Indeed, for any value a, consider
every variable X assigned to this value, that is, such that s[X] = a. Let I ∈ I be the crest
containing a, by definition we have I ∈ D(X ′). Therefore we can assign all these variables
to the same value I.

Now we show the opposite, that is, given a solution to the reduced problem, one can build
a solution to the original problem with at least as many equalities. The key observation
is that, for a given crest [a, b], all intervals overlapping with [a, b] have a common value.
Indeed, suppose that this is not the case, that is, there exists [c1, d1] and [c2, d2] both
overlapping with [a, b] and such that d1 < c2. Then occ(d1) > occ(d1 + 1

2) and similarly
occ(c2− 1

2) < occ(c2). However, since a ≤ d1 < c2 ≤ b, [a, b] would not satisfy the conditions
for being a crest, hence a contradiction. Therefore, for a given crest I, and for every variable
X ′ such that s′[X ′] = I, we can assign X to this common value, hence obtaining as many
equalities. 2

We show that this transformation can be achieved in O(n log n) steps. We once again
use the derivative of the occurrence function (δocc), however, defined on Q rather than [1, λ]:

δocc(v)← (|{i | min(Xi) = v}| − |{i | max(Xi) = v − 1
2
}|).

Moreover, we can compute it in O(n log n) steps as shown in Algorithm 4. We first compute
the non-null values of δocc by looping through each variable X ∈ X (Line 1). We use the
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same data structure as for Algorithm 1, hence the complexity of this step isO(n log n). Next,
we create the partition into crests by going through the derivative once and identifying the
inflection points. The variable polarity (Line 3) is used to keep track of the evolution of the
function occ. The decreasing phases are denoted by polarity = neg whilst the increasing
phases correspond to polarity = pos. We know that a value v is the end of a crest interval
when the variable polarity switches from neg to pos. Clearly, the number of elements in δocc
is bounded by 2n. Recall that the list data structure is sorted. Therefore, going through
the values δocc(v) in increasing order of v can be done in linear time, hence the overall
O(n log n) worst-case time complexity.

Algorithm 4: Computing a partition into crests.
Data: A set of variables: X
Result: I
δocc ← ∅;

1 foreach X ∈ X do
δocc(min(X))← δocc(min(X)) + 1;
δocc(max(X) + 1

2
)← δocc(max(X) + 1

2
)− 1;

I ← ∅;
min← max← 1;

2 while δocc 6= ∅ do
3 polarity ← pos;

k = 1;
repeat

pick and remove the first element (a, k) of δocc;
max← round(a)− 1;
if polarity = pos & k < 0 then polarity ← neg;

until polarity = pos or k < 0 ;
add [min,max] to I;
min← max+ 1;

return I

Therefore, we can replace every crest by a single value at the preprocessing stage and
then run Algorithm 3. Moreover, observe that the number of crests is bounded by n, since
each needs at least one interval to start and one interval to end. Thus we obtain the
following theorem, where n stands for the number of variables, λ for the number of distinct
values, and m for the sum of all domain sizes.

Theorem 5 Enforcing rc on SoftAllEqualminG can be achieved in O(min(λ2, n2)nm)
steps.

Proof. If λ ≤ n then one can achieve range consistency by iteratively calling Algorithm 3
after assigning each of the O(m) unit assignments ((X, v) ∀X ∈ X , v ∈ D(X)). The
resulting complexity is O(nλ2)m (see Theorem 3, the term λ3 is absorbed by nλ2 due to
λ ≤ n).

Otherwise, if λ > n, the same procedure is used, but after applying the reformulation
described in Algorithm 4. The complexity of the Algorithm 4 is O(n log n), and since after
the reformulation we have λ = O(n), the resulting complexity is O(n3m). 2
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7. Approximation Algorithm

We have completed the taxonomy of soft global constraints introduced in Section 3. How-
ever, in this section and in the rest of the paper we refine our analysis of the problem of
maximising the number of pairs of variables sharing a value, that is, SoftAllEqualminG -
optimisation (Definition 10).

Given a solution s over a set of variable X , we denote by obj(s) the number of equalities
in X .

obj(s) = |{{i, j} | s[Xi] = s[X[j] & i 6= j}|.
Furthermore, we shall denote as s∗ and obj(s∗) an optimal solution and the number of
equalities in this solution, respectively. We first study a natural greedy algorithm for ap-
proximating the maximum number of equalities in a set of variables (Algorithm 5). This
algorithm picks the value that occurs in the largest number of domains, and assigns as
many variables as possible to this value (this can be achieved in O(m)). Then it recursively
repeats the process on the resulting sub-problem until all variables are assigned (at most
O(n) times). We show that, surprisingly, this straightforward algorithm approximates the
maximum number of equalities with a factor of 1

2 in the worst case. Moreover, it can be
implemented to run in O(m) amortised time. We use the following data structures3:

• var : Λ 7→ 2X maps every value v to the set of variables whose domains contain v.

• occ : Λ 7→ N maps every value v to the number of variables whose domains contain v.

• val : N 7→ 2Λ maps every integer i ∈ [0..n] to the set of values appearing in exactly i
domains.

These data structures are initialised in Lines 1, 2 and 3 of Algorithm 5, respectively. Then,
Algorithm 6 recursively chooses the value with largest number of occurrences (Line 2),
makes the corresponding assignments (Line 7) while updating the current state of the data
structures (Loop 3).

Algorithm 5: Computing a lower bound on the maximum number of equalities.
Data: A set of variables: X
Result: An integer E such that obj(s∗)/2 ≤ E ≤ obj(s∗)

1 var(v)← ∅, ∀v ∈
S
X∈X D(X);

foreach X ∈ X do
foreach v ∈ D(X) do

add X to var(v);

2 occ(v)← |var(v)|, ∀v ∈
S
X∈X D(X);

3 val(k)← ∅, ∀k ∈ [0..n];
foreach v ∈

S
X∈X D(X) do

add v to val(|var(v)|);
return AssignAndRecurse(var, val, occ, n);

Theorem 6 (Algorithm Correctness) Algorithm 5 approximates the optimal satisfying
assignment of the SoftAllEqualG constraint within a factor of 1

2 and - provided that the
data-structure for representing domains respects some assumptions - runs in O(m).

3. We describe these structures at a lower level in the subsequent proof of complexity.
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Algorithm 6: procedure AssignAndRecurse of Algorithm 5.
Data: A mapping: var : Λ 7→ 2X , A mapping: val : N 7→ 2Λ, A mapping: occ : Λ 7→ [0..n], An

integer: k

1 while val(k) = ∅ do k ← k − 1;
if k ≤ 1 then

return 0;

else
2 pick and remove any v ∈ val(k);
3 foreach X ∈ var(v) do if v ∈ D(X) then

foreach w 6= v ∈ D(X) do
4 remove w from val(occ(w));
5 occ(w)← occ(w)− 1;
6 add w to val(occ(w));

7 assign X with v;

return k(k−1)
2

+AssignAndRecurse(var, val, k);

Proof. We first prove the correctness of the approximation ratio, the soundness of the
algorithm and then the complexity of the algorithm.

Approximation Factor. We proceed using induction on the number of distinct values λ in the
current subproblem involving all unassigned variables. Let s be the solution computed by
Algorithm 5 and let s∗ be an optimal solution. We denote as P (λ) the proposition “If there
are no more than λ values in the union of the domains of X , then obj(s) ≥ obj(s∗)/2”. P (1)
implies that every unassigned variable can be assigned to a unique value v. Algorithm 6
therefore chooses this value and assigns all variables to it. In this case obj(s) = obj(s∗).

Now we suppose that P (λ) holds and we show that P (λ+ 1) also holds. Let the set of
variables X of the problem be such that |

⋃
X∈X D(X)| = λ+ 1 and let v be the first value

chosen by Algorithm 6. We partition the variables into two subset Xv and X̄v depending
on the presence of the value v in their domains.

• Xv = {X ∈ X | v ∈ D(X)} is the set of variables whose domains contain v.

• X̄v = X \ Xv is the complementary set of variables which do not contain the value v.

Using these notations, we will partition the equalities into two subsets in order to count
them. The first subset of equalities are those involving at least one variable in Xv, the
second subset are those restricted to variables in X̄v.

We first compute a bound on the number of equalities that one can achieve on X . Let
k = |Xv|, let s∗v be an optimal solution on X̄v and let obj(s∗v) be the number of equalities
in s∗v. For each variable X ∈ Xv, given any value w in D(X), there are no more than k
variables in X containing w. Indeed, v was chosen for maximising this criterion and belongs
to the domains of exactly k variables. Therefore, there are at most k(k− 1) equalities that
involve at least a variable in Xv, since each one can be involved in at most k− 1 equalities,
and there are k of them. Consequently, on the set of variables X , one can achieve at most
k(k − 1) + obj(s∗v) equalities.

On the other hand, Algorithm 6 assigns every variable in Xv to v and therefore produces
k(k − 1)/2 equalities involving at least one variable in Xv. Moreover, observe that since v
does not belong to any domain in X̄v, the number of distinct values in X̄v is at most λ.
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The induction hypothesis P (λ) can therefore be used, hence we know that the number of
equalities achieved by Algorithm 5 on the subset X̄v is at least obj(s∗v)/2. Consequently, on
the set of variables X , Algorithm 5 achieves at least k(k − 1)/2 + obj(s∗v)/2 equalities.

Since the lower bound on the number of equalities achieved by the greedy algorithm
is half of the upper bound computed above, we can conclude that if P (λ + 1) holds, then
P (λ+ 1) also holds.

Correctness. Here we show that the mappings occ and val are correctly updated in a call to
Algorithm 6. The domain of a variable X changes only when it is assigned to a value v in
Line 7. In that case, the occurrence of every value w ∈ D(X) such that w 6= v is decreased
by one when assigning X to v. Indeed, for every such value w, occ(w) is decremented and
w is removed from val(occ(w) + 1) and added to val(occ(w)).

Complexity. Now we show that Algorithm 5 runs in O(m) steps under the following as-
sumptions:

• The values are consecutive and taken from the set {1, . . . , λ}.

• Assigning a variable to a value can be done in constant time.

• Checking membership of a value in a variable’s domain can be done in constant time.

Notice that if the first assumption does not hold, one can rename values. However, it
would require a further O(λ log λ) time complexity to sort them, as well as O(nλ) to create
a new set of domains.

For every 0 ≤ k ≤ n, we use a doubly linked list to represent val(k). Moreover we use a
single array index with λ+ 1 elements to store the current position of every value v in the
list it appears in (observe that each value appears in exactly one list). To add a value v in
val(k) we simply append it at the tail of the list and set its index to the previous length.
To remove a value v from val(k), we delete the element at position index[v] in val(k). The
total space complexity for this data-structure is therefore O(λ). For each value v, the set
of variables var(k) is implemented as a simple list, hence a O(m) space complexity. The
mapping occ(v) is represented as an array with one element per value, hence a O(λ) space
complexity.

Initialising all three mappings is done in linear time since each addition requires only
constant time. This step can therefore be achieved in O(m) steps. In Line 1 of Algorithm 6,
k can be decremented at most n times in total, hence Line 2 is executed at most n times in
total.

Observe that no value is chosen more than once in Line 2. Moreover, the total space
complexity of var is O(m). Therefore, the total number of steps in Loop 3 is O(m).

Last, observe that no pair variable/value (X,w) will be explored more than once in
Lines 4, 5 and 6. Indeed, since X is assigned to v in Line 7, it will never pass the condition
in Line 3 since subsequent chosen values will not be equal to v. The overall time complexity
is thus in O(m).

2

Theorem 7 (Tightness of the Approximation Ratio) The approximation factor of 1
2

for Algorithm 5 is tight.
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Proof. Let {X1, . . . , X4} be a set of four variables with domains as follows:

X1 ∈ {a}; X2 ∈ {b}; X3 ∈ {a, c}; X4 ∈ {b, c}.

Every value appears in exactly two domains, hence Algorithm 5 can choose any value. We
suppose that the value c is chosen first. At this point no other value can contribute to an
equality, hence Algorithm 5 returns 1. However, it is possible to achieve two equalities with
the following solution: X1 = a, X3 = a, X2 = b, X4 = b. 2

8. Tractable Class

In this section we explore further the connection between the SoftAllEqualminG constraint
and vertex matching. We showed earlier that the general case was linked to 3dMatching.
We now show that the particular case where no value appears in more than two domains
solving the SoftAllEqualG constraint is equivalent to the vertex matching problem on
general graphs, and therefore can be solved by a polynomial time algorithm. We shall then
use this tractable class to show that SoftAllEqualG is NP-hard only if an unbounded
number of values appear in more than two domains.

Definition 11 (The VertexMatching Problem)
Data: An integer K, an undirected graph G = (V,E).
Question: Does there exist M ⊆ E such that |M | ≥ K and ∀e1, e2 ∈ M , e1 and e2 do not
share a vertex.

Theorem 8 (Tractable Class of SoftAllEqualminG ) If all triplets of variables X,Y, Z ∈
X are such that D(X)∩D(Y )∩D(Z) = ∅ then finding an optimal satisfying assignment to
SoftAllEqualminG is in P .

Proof. In order to solve this problem, we build a graph GX = (V,E) with a vertex
xi for each variable Xi ∈ X , that is, V = {xi | Xi ∈ X}. Then for each pair {i, j}
such that D(Xi) ∩ D(Xj) 6= ∅, we create an undirected edge {i, j}; let E = {{i, j} | i 6=
j & D(Xi) ∩ D(Xj) 6= ∅}.

We first show that if there exists a matching of cardinality K, then there exists a solution
with at least K equalities. Let M be a matching of cardinality K of GX , for each edge
e = (i, j) ∈ M we assign Xi and Xj to any value v ∈ D(Xi) ∩ D(Xj) (by construction, we
know that there exists such a value). Observe that no variable is considered twice since it
would mean that two edges of the matching have a common vertex. The obtained solution
therefore has at least |M | equalities.

Now we show that if there exists a solution S with K equalities, then there exists a
matching of cardinality K. Let S be a solution, and let M = {{i, j} | S[Xi] = S[Xj ]}.
Observe that M is a matching of GX . Indeed, suppose that two edges sharing a vertex
(say {i, j}, {j, k}) are both in M . It follows that S[Xi] = S[Xj ] = S[Xk], however this is in
contradiction with the hypothesis. We can therefore compute a solution S maximising the
number of equalities by computing a maximal matching in GX . 2

This tractable class can be generalised by restricting the number of occurrences of values
in the domains of variables. The notion of heavy values is key to this result.
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Definition 12 (Heavy Value) A heavy value is a value that occurs more than twice in
the domains of the variables of the problem.

Theorem 9 (Tractable Class with Heavy Values) If the domain D(Xi) of each vari-
able Xi contains at most one heavy value then finding an optimal satisfying assignment of
SoftAllEqualminG is in P .

Proof. Consider a two stage algorithm. In the first stage, we explore every heavy value
w and assign w to every variable whose domain contains it. Notice that no variable will
be assigned twice. In the second stage, the CSP created by the domains of unassigned
variables consists of only values having at most two occurrences, so we solve this CSP by
transforming it to the matching problem as suggested in the proof of Theorem 8.

We show that there exists an optimal solution where each variable that can be assigned
to a heavy value is assigned to this value. Let s∗ be an optimal solution and w be a heavy
value over a set T of variables of cardinality t. We suppose that only z < t of them are
assigned to w in s∗. Consider the solution s′ obtained by assigning all these t variables
to w: we add exactly t(t − 1)/2 − z(z − 1)/2 equalities. However, we potentially remove
t−z equalities since values other than w do not appear more than twice. We therefore have
obj(s′)−obj(s∗) ≥ t2−3t−z2 +3z, which is non-negative for t ≥ 3 and z < t. By iteratively
applying this transformation, we obtain an optimal solution where each variable that can
be assigned to a heavy value is assigned to this value. The first stage of the algorithm is
thus correct. The second stage is correct by Theorem 8. 2

9. Parameterised Complexity

We further advance our analysis of the complexity of the SoftAllEqualminG constraint
by introducing a fixed-parameter tractable (FPT) algorithm with respect to the number of
values. This result is important because it shows that the complexity of propagating this
constraint grows only polynomially in the number of variables. It may therefore be possible
to achieve ac at a reasonable computational cost even for a very large set of variables,
provided that the total number of distinct values is relatively small.

We first show that the SoftAllEqualminG -optimisation problem is FPT with respect
to the number of values λ. We use the tractable class introduced in the previous section
to generalise this result, showing that the problem is FPT with respect to the number of
heavy values occurring in domains containing two or more heavy values. We begin with a
definition.

Definition 13 (Solution from a Total Order) A solution s≺ is induced by a total order
≺ over the values if and only if

s[X] = v ⇒ ∀w ≺ v, w 6∈ D(X).

We now prove the following key lemma.

Lemma 1 There exists a total order ≺ over the set of values, such that the solution s≺
induced by ≺ is optimal.
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Proof. Let s∗ be an optimal solution, v be a value, and occ(s∗, v) be the number of
variables assigned to v in s∗. Moreover, let ≺occ be a total order such that values are
ranked by decreasing number of occurrences (occ(s∗, v)) and ties are broken arbitrarily. We
show that ≺occ induces s∗.

Consider, without loss of generality, a pair of values v, w such that v ≺occ w. By
definition we have occ(s∗, v) ≥ occ(s∗, w). We suppose that the hypothesis is falsified and
show that this leads to a contradiction. Suppose that there exists a variable X such that
{v, w} ⊆ D(X) and s∗[X] = w (that is, ≺occ does not induce s∗). The objective value
of the solution s′ such that s′[X] = v and s′[Y ] = s∗[Y ] ∀y 6= x is given by: obj(s′) =
obj(s∗) + occ(s∗, v)− (occ(s∗, w)− 1). Therefore, obj(s′) > obj(s∗). However, s∗ is optimal,
hence this is a contradiction. 2

An interesting consequence of Lemma 1 is that searching over the space of total orders on
values is enough to compute an optimal solution. Moreover, the fixed-parameter tractability
of the SoftAllEqualminG constraint follows easily from the same lemma.

Theorem 10 (FPT – number of values) Finding an optimal satisfying assignment of
the SoftAllEqualminG constraint is fixed-parameter tractable with respect to λ, the number
of values in the domains of the constrained variables.

Proof. Explore all possible λ! permutations of values. For each permutation create a
solution induced by this permutation. Compute the cost of this solution. Return the
solution having the highest cost. According to Lemma 1, this solution is optimal. Creating
an induced solution can be done by selecting for each domain the first value in the order.
Clearly, this can be done in O(m). Computing the cost of the given solution can be done by
computing the number of occurrences occ(w) and then summing up occ(w) ∗ (occ(w)− 1)/2
for all values w. Clearly, this can be done in O(m) as well. Hence the theorem follows. 2

We can also derive the following corollary from Lemma 1:

Corollary 2 The number of optimal solutions of the CSP with the SoftAllEqualG is at
most λ!.

Proof. According to Lemma 1, each optimal solution is induced by an order over the values
of the given problem. Clearly each order induces exactly one solution. Thus the number of
optimal solution does not exceed the number of total orders which is at most λ!. 2

Corollary 2 shows that the number of optimal solutions of the considered problem does
not depend on the number of variables and they all can be explored by considering all
possible orders of values. We believe this fact is interesting from the practical point of
view because in essence it means that even enumerating all optimal solutions is scalable
with respect to the number of variables. Moreover, we can show that SoftAllEqualminG

is fixed-parameter tractable with respect to the number of conflicting values, defined as
follows.

Definition 14 (Conflicting Value) A value w of a given CSP is a conflicting value if
and only if it is a heavy value and there is a domain D(X) that contains w and another
heavy value.
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Theorem 11 (FPT – number of conflicting values) Let k be the number of conflict-
ing values of a CSP comprising only one SoftAllEqualG constraint. Then the CSP can
be solved in time O(k!

√
nλ), hence SoftAllEqualminG is fixed-parameter tractable with

respect to k.

Proof. Consider all the permutations of the conflicting values. For each permutation
perform the following two steps. In the first step for each variable X where there are two
or more conflicting values, remove all the conflicting values except the one which is the first
in the order among the conflicting values of D(X) according to the given permutation. In
the second stage we obtain a problem where each domain contains exactly one heavy value.
Solve this problem polynomially by the algorithm provided in the proof of Theorem 9.

Let s be the solution obtained by this algorithm. We show that this solution is optimal.
Let p∗ be a permutation of all the values of the considered CSP so that the solution s∗

induced by p∗ has the highest possible cost. By Lemma 1, s∗ is an optimal solution. Let p1

be the permutation of the conflicting values which is induced by p∗ and let s1 be the solution
obtained by the algorithm above with respect to p1. By definition of s, obj(s) ≥ obj(s1).
We show that obj(s1) ≥ obj(s∗) from which the optimality of s immediately follows.

Observe that there is no X such that s∗[X] = w and w was removed from D(X) in the
first stage of the above algorithm where the permutation p1 is considered. Indeed, w can
only be removed from D(X) if it is preceded in p1 by a value v ∈ D(X). It follows that w
is also preceded in p∗ by v and consequently s∗(X) 6= w. Thus s∗ is a solution of the CSP
obtained as a result of the first stage. However s1 is an optimal solution of that CSP by
Theorem 9 and, consequently, obj(s1) ≥ obj(s∗) as required.

Regarding the runtime, observe that the execution of the algorithm consists of k! running
an algorithm for finding the largest bipartite matching of the given graph. This graph has
n vertices (corresponding to the variables). Moreover, each edge is associated with a value
and no two edges are associated with the same value (because when the matching applies
each value has at most two occurrences). It follows that the graph has at most λ edges.
According to Micali and Vazirani (1980), the largest matching can be found in O(

√
nλ),

hence the upper bound. 2

This result shows that the complexity of propagating the SoftAllEqualminG constraint
comes primarily from the number of (conflicting) values, whereas other factors, such as the
number of variables, have little impact. Notice that detecting conflicting values can be done
in linear time (O(m)), by first counting occurrences of every value, then flagging any value
with at least two occurrences as “heavy” and finally flagging heavy values as “conflicting”
in every domain containing at least two of them.

Observe, moreover, the “exponential” part of this algorithm is based on the exploration
of all possible orders over the given set of conflicting values. In fact the ordering relation
between two values matters only if these values belong to a domain of the same variable.
In other words consider a graph H on values of the given CSP instance. Two values a and
b are connected by an edge if and only if they belong to the domain of the same variable.
Instead of considering all possible orders over the given set of values we may consider all
possible ways of transforming the given graph into an acyclic digraph. The upper bound
on the number of possible transformations is 2E(H) where E(H) is the number of edges of
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H. For sparse graphs such a bound is much more optimistic that k!. For example, if the
average degree of a vertex is 4 then the number of considered partial orders is 22k = 4k.

10. Finding a Set of Similar or Diverse Solutions

Problems of similarity and diversity have a wide range of applications. Finding several
diverse solutions can be used to sample the solution space, for instance for product recom-
mendation (Shimazu, 2001), case-based reasoning (Smyth & McClave, 2001; Aha & Watson,
2001) or constraint elicitation (Bessière, Coletta, Koriche, & O’Sullivan, 2005; Gama, Ca-
macho, Brazdil, Jorge, & Torgo, 2005).

Conversely, similarity is important for problems with a periodic aspect. For instance, a
schedule or timetable may need to be computed on a weekly basis, but the constraints might
change slightly from week to week. In this type of problems the regularity of the solutions,
that is, the similarity between each week’s solution, is a very valuable property (Groër,
Golden, & Wasil, 2009).

Finally, finding similar solutions to a set of variants of a problem can be useful to
find solutions that are robust to uncertainty. Suppose, for example, that we are to solve
a Travelling Salesman Problem (TSP), however, the costs associated with a set of k − 1
links between pairs of cities are uncertain or variable over time. We would like to find
an optimal, or near-optimal, route such that when the cost of traversing a link changes, a
limited amount of re-routing is sufficient to obtain another near-optimal solution. For that
purpose, one can build a similar structure as that pictured in Figure 6 by duplicating the
TSP once per uncertain link, the last being the original formulation. In each duplicate, the
cost of the corresponding link is then set to some expected upper bound. If we minimise
the distance between solutions, we obtain a solution with good properties of robustness: if
the cost associated with the ith link increases, the solution of the ith duplicate is a valid
alternative avoiding this link (if it degrades the solution quality too much) whilst requiring
a small amount of re-routing.

We therefore want to find a set of k solutions — either pairwise similar or different — to
a set of k problems, distinct or not. A heuristic method was introduced to solve the problem
of finding k solutions of a constraint network, such that the minimum (resp. maximum)
distance between all pairs of solutions is maximum (resp. minimum) by Hebrard, Hnich,
O’Sullivan, and Walsh (2005). Since reasoning on the maximum minimum distance is NP-
hard (Frances & Litman, 1997), it was proposed to use the sum of the Hamming distances
instead. In this section, we first formally define the notion of Hamming distance between
variables and between solutions. Next, we show that the constraints studied in this paper
can help achieve ac and rc in polynomial time for respectively maximising and minimising
the sum of pairwise distances between solutions to a set of problem instances.

10.1 Hamming Distance:

The Hamming distance between the instantiation of two variables X and Y is defined as
follows:

∆h(X,Y ) =
{

1 iff X 6= Y
0 otherwise
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Figure 6: The problem P , duplicated k times.

Whereas the Hamming distance between two solutions si and sj (over the sets of variables
{Xi

1, . . . , X
i
n} and {Xj

1 , . . . , X
j
n}, respectively) is defined as:

∆h(si, sj) =
∑

1≤`≤n
∆h(Xi

`, X
j
` )

Given a problem P with n variables {X1, . . . , Xn}, we duplicate P k times, with identical
constraints if we seek a set of diverse solutions to P , or altered constraints to model the
expected scenarios if we seek for a set of similar solutions for some variations of P (see
Figure 6).

Then the objective to maximise or minimise is the sum of the pairwise distances between
the (sub-)solutions of the duplicated problems:∑

1≤i<j≤k
∆h(si, sj) (4)

10.2 Constraint Formulation:

The first approaches to this problem relied on heuristic methods (Hebrard et al., 2005;
Hentenryck, Coffrin, & Gutkovich, 2009), It was also shown that when the problem P allows
it, knowledge compilation methods could efficiently solve this problem (Hadzic, Holland, &
O’Sullivan, 2009).

Here we show that one can achieve arc or bound consistency for maximising this objective
function. Whilst arc consistency is NP-hard for minimisation, bounds consistency can be
achieved in polynomial time both for minimisation and maximisation. First, we decompose
the objective function described previously (Equation 4) using the SoftAllEqualminG or
SoftAllEqualmaxG constraints for optimising, respectively, solution similarity or diversity.
Then we shall see that achieving ac (resp. bc) on this decomposition is equivalent to
achieving ac (resp. bc) on the global constraint defined by bounding the objective.

Remember that each row in Figure 6 represents a duplicate of the original set of variables
{X1, . . . , Xn}. The objective function is defined as the sum of the Hamming distances
between every pair of rows. However, consider now Figure 6 by vertical slices. Each
column corresponds to the set of duplicates {Xj

i | 1 ≤ j ≤ k} of an original original
variable Xi. One can compute the contribution of this set of variables to the sum of
Hamming distances between pairs of rows as the number of pairwise disequalities in the
set: |{{j, k} | Xj

i 6= Xk
i & j < k}|. Notice that this is precisely the definition of the

cost to minimise (resp. maximise) in SoftAllEqualminG (resp. SoftAllEqualmaxG ).
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Therefore we can model the objective function as the constraint networks shown in Figure 7,
respectively for minimisation and maximisation. Notice that, to simplify the model, we use
the following, equivalent formulation for SoftAllEqualmaxG , rather than Definition 3:

SoftAllEqualmaxG ({X1, . . . , Xn}, N)⇔ N ≤ |{{i, j} | Xi 6= Xj & i < j}|.

minimise
∑

1≤i≤nNi subject to

∀1 ≤ i ≤ n SoftAllEqualminG (X1
i , . . . , X

k
i , Ni)

maximise
∑

1≤i≤nNi subject to

∀1 ≤ i ≤ n SoftAllEqualmaxG (X1
i , . . . , X

k
i , Ni)

Figure 7: A constraint network that minimises (resp. maximises) the sum of distances
between pairs of solutions to k vectors of variables.

Second, notice that the constraint networks depicted in Figure 7 are such that no two
constraints share more than one variable, and there is no Berge-cycle (Berge, 1970) in the
constraint hypergraph, that is, a sequence C1, X1, C2, . . . , Xk, Ck+1 such that:

• X1, . . . , Xk are distinct variables,

• C1, . . . , Ck+1 are distinct constraints,

• k ≥ 2 and C1 = Ck+1,

• Xi is in the scope of Ci and Ci+1.

Indeed, the SoftAllEqual constraints do not share any variable, and the overlap with the
sum constraint is limited to a single variable with each SoftAllEqual. The constraint
hypergraph is therefore Berge-acyclic, and in such constraint networks it was shown that
propagating ac is sufficient to filter all globally inconsistent values (Janssen & Vilarem,
1988; Jégou, 1991).

Therefore, when every constraint in this network is ac (resp. rc), the network is
globally arc consistent (resp. globally range consistent). We can view these two constraint
networks as two global constraints, respectively CN div and CN sim, over the set variables
{Xj

i | 1 ≤ i ≤ n, 1 ≤ j ≤ k} and a variable N to represent the objective:

CN div({Xj
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, N)⇔

N ≤
∑

1≤i≤n
Ni & ∀1 ≤ i ≤ n SoftAllEqualmaxG (X1

i , . . . , X
k
i , Ni)

CN sim({Xj
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, N)⇔

N ≥
∑

1≤i≤n
Ni & ∀1 ≤ i ≤ n SoftAllEqualminG (X1

i , . . . , X
k
i , Ni)
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Theorems 12 and 13 (where m =
∑

1≤i≤n |D(X1
i )| denotes the sum of the domain sizes in

one copy of the problem) follow from, respectively, (van Hoeve, 2004) and Theorem 5:

Theorem 12 Enforcing ac on CN div({Xj
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, N) can be achieved in

O(k2m) steps.

Proof. Since the constraint network equivalent to CN div is Berge-acyclic, we know that
it is ac iff every constraint in the decomposition is ac. Moreover, we describe a filtering
algorithm that requires only a bounded number of calls to the propagator of each constraint
in the decomposition.

We assume that no variable’s domain is completely wiped out during the process. If
it was the case, the process would be interrupted earlier (as soon as an inconsistency is
detected while achieving ac on a component).

We introduce some terminology:

• property (1) denotes the fact that for all 1 ≤ i ≤ n the domains of the variables in Xj
i

are consistent with the upper bounds of Ni,

• property (2) denotes the fact that for all 1 ≤ i ≤ n the domains of the variables in Xj
i

are consistent with the lower bounds of Ni,

• property (3) denotes the fact that the sum constraint (N ≤
∑

1≤i≤nNi) is bc (or
equivalently ac).

First, the domain of some variable Xj
i for 1 ≤ i ≤ n and 1 ≤ j ≤ k might have changed,

as well as the lower bound of N . A change on the upper bound of N either results on an
immediate failure, or bears no consequences.

1. For every i ∈ [1..n], we update the upper bound of the variable Ni by calling the
procedure proposed by van Hoeve (2004) to find the maximum possible number of
disequalities. Hence property (1) holds.

2. We achieve bc (equivalent to ac in this case) on the sum constraint. Notice that only
the upper bound of N and the lower bounds of Ni for some 1 ≤ i ≤ n will be updated,
therefore property (1) and (3) hold.

3. For every i ∈ [1..n], we prune the domains of the variables in {Xj
i | 1 ≤ j ≤ k}

by calling the filtering procedure proposed by van Hoeve (2004). Since this domain
reduction will not trigger any further changes in the bounds of Ni, we know property
(1), (2) and (3) hold, hence CN div is ac.

The first phase requires O(
∑

1≤i≤n k
2|D(X1

i )|), that is O(k2m) steps. The second phase
requires O(n) steps. Finally, the third phase, like the first, requires O(k2m) steps. Hence
an overall O(k2m) time complexity.

Theorem 13 Enforcing rc on CN sim({Xj
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, N) can be achieved in

O(k4m) steps.
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Proof. This proof is very similar to that of Theorem 12, if we swap upper and lower
bounds, and if we use the procedure described in Section 6 for phase (1) and (3).

The first phase requires O(k3n) steps. The second phase requires O(n) steps. Finally,
the third phase requires O(

∑
1≤i≤n k

4|D(X1
i )|), that is O(k4m) steps. Hence an overall

O(k4m) time complexity.

11. Conclusion

In many applications we are concerned with stating constraints on the similarity and di-
versity amongst assignments to variables. To formulate such problems we can use soft
variants of the well known AllDifferent and AllEqual constraints. In this paper we
considered the global constraints AllDifferent and AllEqual, and their optimisation
variants, SoftAllDiff and SoftAllEqual, respectively. Furthermore, we considered
two cost functions, based either on the Hamming distance to a satisfying assignment or
on the number of violations on the decomposition graph. We have shown that the con-
straint ensuring an upper bound on the Hamming distance with a solution satisfying the
AllEqual constraint can be propagated efficiently, both for arc and bounds consistency.
Then we have shown that, on the one hand, deciding the existence of an assignment min-
imising the number of violation in the decomposition graph of the AllEqual constraint is
NP-complete, hence propagating arc consistency on the constraint ensuring this property is
NP-hard. On the other hand, propagating bounds consistency on the same constraint can
be done in polynomial time. Moreover, we have shown that this problem is fixed parameter
tractable in the number of distinct values of the problem. This work complements nicely
some earlier results of Cohen et al. (2004) showing that the language of soft binary equality
constraints was NP-complete, for as few as three distinct values in the domains. In this
paper we have shown that the problem remains NP-complete even if the graph of soft binary
equality constraints forms a clique, however, becomes polynomial if the number of values is
bounded.

This paper therefore provides a comprehensive complexity analysis of achieving ac and
bc on an important class of soft constraints of difference and equality. Interestingly, this
taxonomy shows that enforcing equality is harder than enforcing difference.
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& Rueher, M. (Eds.), Proceedings of the 6th International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR-04), Vol. 3011 of Lecture Notes in Computer Science, pp. 80–95,
Nice, France. Springer-Verlag.

Beldiceanu, N. (2001). Pruning for the Minimum Constraint Family and for the Number
of Distinct Values Constraint Family. In Walsh, T. (Ed.), Proceedings of the 7th
International Conference on Principles and Practice of Constraint Programming (CP-
01), Vol. 2239 of Lecture Notes in Computer Science, pp. 211–224, Paphos, Cyprus.
Springer-Verlag.

Berge, C. (1970). Graphs and Hypergraphs. Dunod.

Bessière, C., Coletta, R., Koriche, F., & O’Sullivan, B. (2005). A SAT-Based Version Space
Algorithm for Acquiring Constraint Satisfaction Problems.. In Gama et al. (Gama
et al., 2005), pp. 23–34.

Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., & Walsh, T. (2006). Filtering algorithms
for the nvalue constraint. Constraints, 11 (4), 271–293.

Cohen, D., Cooper, M., Jeavons, P., & Krokhin, A. (2004). A maximal tractable class of
soft constraints. Journal of Artificial Intelligence Research, 22, 1–22.

Frances, M., & Litman, A. (1997). On Covering Problems of Codes. Theory of Computing
Systems, 30, 113–119.

Gama, J., Camacho, R., Brazdil, P., Jorge, A., & Torgo, L. (Eds.). (2005). Machine Learn-
ing: ECML 2005, 16th European Conference on Machine Learning, Porto, Portu-
gal, October 3-7, 2005, Proceedings, Vol. 3720 of Lecture Notes in Computer Science.
Springer.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman and Company.
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